• 締切済み
  • すぐに回答を!

中3 数学

素数、因数、約数についての質問です。 12=1×12と表すとき 1と12は12の因数と言うことは正しいのでしょうか? 素数分解の過程で1を因数とは見なさないため、因数と約数の違いを説明する際に 言葉に詰まってしまいました。 因数とは 数や式が積の形で表されるときの ひとつのひとつの数や式のことを言うのだから 12=1×12のとき1は因数であると言うことに間違いはないでしょうか? 90の約数を素因数分解を使って求めよ、という類の問題の本質を分かりやすく伝えるにはどうすれば良いでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数188
  • ありがとう数1

みんなの回答

  • 回答No.2
noname#195146
noname#195146

 因数は二つの意味があります。一つは整数の約数です。約数は特に断らない限り、1を含めません。素数でなくても構わず、素数の場合を特に素因数と呼びます。12について、この意味では1を因数と呼ぶことはできません。  もう一つは、乗法(掛け算)される対象のことです。1×12と書くとき、この意味では、1も12も因数です。 >90の約数を素因数分解を使って求めよ、という類の問題の本質を分かりやすく伝えるにはどうすれば良いでしょうか?  例えば、「90を素数の積の形に書いてみましょう。それを使って、90にあり得る約数を全部書き出してみましょう。」といった感じでしょうか。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 約数と因数の違い(∈N)

    中学校3年で「素因数分解」が教科書に出てきます。 教科書では「因数」「素数」「素因数分解」の順に説明されています。「因数」と小学校で習う「約数」の違いは何ですか? ほとんど同じなのかと思いますが、「因数」の方は1およびもとの数を含まないのかな??と思ったのです。 だって多項式の因数分解の話では(x^2+2x+4)は実数の範囲では「因数分解できない」っていいますよね。 どなたか正確なところをご存知でしたら教えてください。また出典も教えていただければ幸いです。

  • 数学の参考書、本質の研究の記述に間違いはありますか

    本質の研究I・A P.31 因数分解のセクションにおいて、「どんな整数も必ず素因数分解ができる」という記述がありました。 しかし、整数には負数が含まれ、素数の定義は1と自分自身以外に約数を持たない1以外の自然数の筈なので、負数を自然数のみで表すことは不可能と考えました。 この場合上記の記述は間違いで、「どんな自然数でも必ず素因数分解ができる」が、著者が本来書きたかった内容ではないでしょうか? 他にも、この参考書に誤った記述がある部分があれば教えてください。

  • 中学数学を教えて下さい

    今、問題集を解いているのですが解説を読んでも疑問が残ってしまっています。もしかしたらすごく基本的な部分かもしれないのですが、考えても考えてもわかりません。二問あるのですが、どちらかだけでもいいのでお力添えいただければ嬉しいです。 1.ある素数pに72を加えた数を素因数分解すると13×q(ただしqは素数)となる。   またpをこのqで割ると5余るという。   このとき、pの値で考えられるものをすべて答えなさい。 (解説)  p+72=13×qより、p=13q-72  pをqで割った時の商をaとすると、  p=aq+5  よって、13q-72=aq+5  (13-a)q=77                77=7×11、qは素数だからqは7か11   q=7のとき、p=13×7-72=19  q=11のとき、p=13×11ー72=71  19,71は素数だから、問題に適している。     この解説の  (13-a)q=77   77=7×11、qは素数だからqは7か11  q=7のとき、p=13×7-72=19  q=11のとき、p=13×11ー72=71  の部分なのですが、  (1)77が11×7なのは分かるのですが、なぜそのどちらかがqの値になるのか  (2)(13-a)は無視してしまっていいのか  (3)7と11を当てはめて計算するとき、aはどこにいってしまっているのか  など、全体的によくわかっていません。(1)~(3)を無視してもいいので、回答頂けると嬉しいです。 2,自然数nに対して、nの約数の個数をf(n)で表す。例えば、f(7)=2、   f(8)=4,f(9)=3である。   自然数aについて、f(a)=6のとき、f(aの3乗)の値をすべて求めなさい。  解説  6=1×6=2×3だから、aを素因数分解すると、素数p,qを使ってa=p×p×p×p×p   またはa=pq×qの形に表せる。  a=pxpxpxpxpのとき、axaxa=pxpxpxpxpxpxpxpxpxpxpxpxpxpxp(pの15乗)  になるから、  f(axaxa)=15+1=16  a=pqxqのとき、axaxa=pxpxpxqxqxqxqxqxq となるから  f(axaxa)=(3+1)×(6+1)=28  この解説の  6=1×6=2×3だから、aを素因数分解すると、素数p,qを使ってa=p×p×p×p×p   またはa=pq×qの形に表せる。  の部分なのですが、なぜこうなるのかがわからなく、結果的に全部よくわかりません。  頭が悪くて申し訳ないのですが、解説をお願い致します。     

  • 回答No.1

数学よりは、国語、定義の問題のような。 > 12=1×12と表すとき > 1と12は12の因数と言うことは正しいのでしょうか? OKです。 因数 - 辞書すべて - goo辞書 http://dictionary.goo.ne.jp/search.php?IE=UTF-8&MT=%E5%9B%A0%E6%95%B0&kind=all&mode=0&SH=1&from=gootop | 一つの数や整式が、いくつかの数や整式の積の形で表されるときの、その個々の数や整式のこと。因子。 > 素数分解の過程で1を因数とは見なさないため、因数と約数の違いを説明する際に 言葉に詰まってしまいました。 正確には「素因数分解の過程で、1を(素数で無いから)素因数と見なさないため」だと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました!

関連するQ&A

  • 素因数分解の一意性を保たせるため?

    「素数」とは「1とその数自身の他に約数を持たない数」と習いました。 1は素数ではないということですが、これは「素因数分解の一意性を保たせるため」と知りました。 これはどういうことでしょうか? 中学生でも解るようにご説明下さい。 (それとも中学生に解るように、は無理でしょうか……?) 宜しくお願いします。

  • 因数と素因数およびそれを用いた証明

    他の方の質問に回答しているやりとりの中でどうしても腑に落ちないことがあり、これ以上その方の回答欄に書くわけにもいかないと思い質問します。 「素因数」…ある整数の約数である素数のこと。 「因数」…一つの数または式がいくつかの数または式の積によって形成されている場合、その個々のその個々の数や式、因子。 (いずれも広辞苑より) とあります。 この説明を読む限りでは、素因数⊂因数だと思います。つまり、整数が因数の積で表される時、その因数が素数の時は特に素因数と呼ぶ、と。 ということは、証明においてある整数の因数全体で成り立つことが示せれば、その整数の素因数でも成り立つことは自明だと思うのですが、違うのでしょうか? また、ほとんどの参考書および教科書では、 「ある整数Aと1を除く自然数mにおいて、A^3がmの倍数⇔Aがmの倍数」であることを自明のこととして扱っています(mが素数かどうかに関わらず)。事実私もそうでした。しかし、自明ではないという意見もあるようです。どちらなのでしょうか? 自明であるという意見の方はその理由を、自明でないと言う方は反例をあげて下さい。 長文になりましたが、よろしくお願いします。

  • 素因数分解と約数の個数

    こんばんわ。早速ですが、質問に移らさせていただきます。 例えば、36=2の2乗×3の2乗、と素因数分解できます。このように、素数の積にする事により 約数の個数が解ります。この場合、 (指数+1)×(指数+1)が、約数の個数になります。 このような公式を学んだところなのですが、具体的な整数でいろいろと試してみましたが、なぜ、そのような公式になるのかが、検討もつきません。何か、手がかりがあれば、よろしくお願いいたします。

  • 素因数分解について

    X=√4,840,000 を素因数分解?? で解く場合、100*2*11=2,200 となると思いますが、素数の100を1000にしては駄目ですか? そもそも、素因数分解のルールが理解出来ていません。 素因数分解の簡単なやり方を分かり易く教えて下さる方、宜しくお願いいたします。 因数分解は方程式なので、取っ付きにくいイメージがあります。

  • 数学の質問です!

    数学の質問です! 144のすべての正の約数の積を素因数分解して表せ。 この写真が模範解答なのですが、どうして12・12だけ別で考えるんですか? 写真の文字が読めなかったら教えてください。

  • 素因数分解について

    中学三年で習う素因数分解についてです。 素因数分解をするときに、数字を最小の素数で割らなければいけない理由は何ですか? また、素因数分解を利用して最大公約数と最小公倍数を求めるための式(共通の素数をかけていくという式です)の意味が理解できません。。 何故あの式で最小公倍数と最大公約数が出るんでしょうか? テストが近いのでかなり焦っています。 どなたか詳しく説明してくださる方、回答よろしくお願いします。

  • 数学。

    因数分解と、素因数分解は、違うものなのですか?

  • 約数の個数(正の数と負の数)

    私立文系で大学を卒業した社会人ですが、数学をやり直しています。 今、約数の数を求めるところを勉強していて疑問がでてきたので1点教えてください。 ある数Aの約数は、Aを素因数分解して 各素因数の指数に1を足したものを掛けた数に等しいとあるので A=a^x*b^y*C^z Aの約数=(x+1)(y+1)(z+1) となるのだろうと理解しました。 でも例えばAが負の数だった場合はどうなるのでしょうか。 (素数は正の数に限られていた気がします。) そもそも学校の試験では正の数の問題しか出ないのでしょうか。 よろしくお願いします。

  • n^2-20n+91が素数となる整数nの値・・・

    すごく、基本的な問題だと思うのですが、考え方に疑問があります。 n^2-20n+91が素数となる整数nの値を求める問題です。 参考書の解説には、題式を因数分解して=(n-7)(n-13)とし、 Pが素数のとき、素因数分解したとき1×Pにしかならないので、 n-7又はn-13のどちらかが1ということで、 n-7=±1またはn-13=±1とおいています。 自分が分からないので、「±」です。素因数分解したとき1×Pにしかならないので、 n-7=1またはn-13=1とおいてしまいました。 なぜ、±1とおけるのかが分かりません。要は-1がどのようにして条件になるのかが理解 できていません。 そういうわけでございます。考え方の質問です。

  • 素因数分解について

     ものすごく大きな素数二つを掛け合わせた数を素因数分解することは難しい、というようなことを本で読みました。 これって暗号を作ることにも利用されているみたいですが、どうしてこの数を素因数分解することが難しいのでしょうか?