• ベストアンサー
  • 暇なときにでも

数学の参考書、本質の研究の記述に間違いはありますか

本質の研究I・A P.31 因数分解のセクションにおいて、「どんな整数も必ず素因数分解ができる」という記述がありました。 しかし、整数には負数が含まれ、素数の定義は1と自分自身以外に約数を持たない1以外の自然数の筈なので、負数を自然数のみで表すことは不可能と考えました。 この場合上記の記述は間違いで、「どんな自然数でも必ず素因数分解ができる」が、著者が本来書きたかった内容ではないでしょうか? 他にも、この参考書に誤った記述がある部分があれば教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数160
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

>この場合上記の記述は間違いで、「どんな自然数でも必ず素因数分解ができる」が、著者が本来書きたかった内容ではないでしょうか? 数学的には著者が正しいといえるでしょう. ただし「0と1と(-1)を除く整数は必ず素因数分解できる」という意味です. 実は数学的には素因数分解は決して「素因数の積だけ」で表すものではありません. 数学には「単元」とか「可逆元」とか呼ばれる概念があります. 整数の場合は「単元」というのは1と-1になります そして,整数の素因数分解とは 「素数のべき」および「単元」の積に分解すること を意味します. そして「素因数分解の一意性」は「単元の積を除いて一意」という意味です 例えば 10 = 2 x 5 = 1^2 x 2 x 5 = (-1)^4 x 1^5 x 2 x 5 とかできますがが,1と(-1)の積を見なければ2x5で一意です. 負の数の場合も同様です こんなの素因数分解じゃないといわれるかもしれませんが 同様なことは多項式の素因数分解でよくみかけます x^2-2x+1 = (x-1)^2 = (2x-2)^2 * 1/4 とかのように「係数のくくり方」で分解の見た目は変わりますよね 実数係数の多項式を考える場合「単元」ってのは実数そのものであり 多項式の素因数分解は実数の積を除いて一意だということで 整数の場合となんら違いはありません.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

整数の素因数分解とは「素数のべき」および「単元」の積に分解することを意味する。 これがミソのようですね。 興味深いお話でした。 回答ありがとうございます。

関連するQ&A

  • 中3 数学

    素数、因数、約数についての質問です。 12=1×12と表すとき 1と12は12の因数と言うことは正しいのでしょうか? 素数分解の過程で1を因数とは見なさないため、因数と約数の違いを説明する際に 言葉に詰まってしまいました。 因数とは 数や式が積の形で表されるときの ひとつのひとつの数や式のことを言うのだから 12=1×12のとき1は因数であると言うことに間違いはないでしょうか? 90の約数を素因数分解を使って求めよ、という類の問題の本質を分かりやすく伝えるにはどうすれば良いでしょうか?

  • 約数と因数の違い(∈N)

    中学校3年で「素因数分解」が教科書に出てきます。 教科書では「因数」「素数」「素因数分解」の順に説明されています。「因数」と小学校で習う「約数」の違いは何ですか? ほとんど同じなのかと思いますが、「因数」の方は1およびもとの数を含まないのかな??と思ったのです。 だって多項式の因数分解の話では(x^2+2x+4)は実数の範囲では「因数分解できない」っていいますよね。 どなたか正確なところをご存知でしたら教えてください。また出典も教えていただければ幸いです。

  • 素因数分解について

    X=√4,840,000 を素因数分解?? で解く場合、100*2*11=2,200 となると思いますが、素数の100を1000にしては駄目ですか? そもそも、素因数分解のルールが理解出来ていません。 素因数分解の簡単なやり方を分かり易く教えて下さる方、宜しくお願いいたします。 因数分解は方程式なので、取っ付きにくいイメージがあります。

その他の回答 (2)

  • 回答No.3
noname#165208
noname#165208

> 素数の定義は1と自分自身以外に約数を持たない1以外の自然数 自然数で代表してるってだけのことじゃないかな? ±1と±自分自身以外に約数を持たない±1以外の整数が素数じゃないかな? -2 も素数なのですよ。でも +2 と本質的に変わらないので、普通 +2 のほうだけを 素数として取り上げてるわけ。 > 「どんな整数も必ず素因数分解ができる」 0 をどうやって素因数分解するのだろう?これは著者に訊きたいね。 ま、これは大雑把に言ってるだけのことのような気がする。 正しくは「0を除くどんな整数も必ず素因数分解ができる」かな?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

うーん、自分の知っている素数の定義と違って多少混乱しています。 高校レベルを超えた数学を扱うときは、その都度定義の仕方が変わるということでひとまず理解しておきます。 回答ありがとうございました。

  • 回答No.1
noname#163471
noname#163471

その本をもってないから知りませんけど、質問者さんが書いたとおりなら間違いなのでしょう。 気になるなら著者に直接問い合わせましょう。 出版社のホームページから問い合わせれば、大概著者と連絡とってくれます。 自分の場合、100%返信もらいましたし、素直に間違いは間違いと認めてくれましたよ。 そもそも間違いがひとつもない本なんて気持ち悪い。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

あまり本を読まないので知りませんでしたが、間違いはごくごく一般的なものなのですね。 心得ておきます。 回答ありがとうございます。

関連するQ&A

  • 数学。

    因数分解と、素因数分解は、違うものなのですか?

  • 中学数学を教えて下さい

    今、問題集を解いているのですが解説を読んでも疑問が残ってしまっています。もしかしたらすごく基本的な部分かもしれないのですが、考えても考えてもわかりません。二問あるのですが、どちらかだけでもいいのでお力添えいただければ嬉しいです。 1.ある素数pに72を加えた数を素因数分解すると13×q(ただしqは素数)となる。   またpをこのqで割ると5余るという。   このとき、pの値で考えられるものをすべて答えなさい。 (解説)  p+72=13×qより、p=13q-72  pをqで割った時の商をaとすると、  p=aq+5  よって、13q-72=aq+5  (13-a)q=77                77=7×11、qは素数だからqは7か11   q=7のとき、p=13×7-72=19  q=11のとき、p=13×11ー72=71  19,71は素数だから、問題に適している。     この解説の  (13-a)q=77   77=7×11、qは素数だからqは7か11  q=7のとき、p=13×7-72=19  q=11のとき、p=13×11ー72=71  の部分なのですが、  (1)77が11×7なのは分かるのですが、なぜそのどちらかがqの値になるのか  (2)(13-a)は無視してしまっていいのか  (3)7と11を当てはめて計算するとき、aはどこにいってしまっているのか  など、全体的によくわかっていません。(1)~(3)を無視してもいいので、回答頂けると嬉しいです。 2,自然数nに対して、nの約数の個数をf(n)で表す。例えば、f(7)=2、   f(8)=4,f(9)=3である。   自然数aについて、f(a)=6のとき、f(aの3乗)の値をすべて求めなさい。  解説  6=1×6=2×3だから、aを素因数分解すると、素数p,qを使ってa=p×p×p×p×p   またはa=pq×qの形に表せる。  a=pxpxpxpxpのとき、axaxa=pxpxpxpxpxpxpxpxpxpxpxpxpxpxp(pの15乗)  になるから、  f(axaxa)=15+1=16  a=pqxqのとき、axaxa=pxpxpxqxqxqxqxqxq となるから  f(axaxa)=(3+1)×(6+1)=28  この解説の  6=1×6=2×3だから、aを素因数分解すると、素数p,qを使ってa=p×p×p×p×p   またはa=pq×qの形に表せる。  の部分なのですが、なぜこうなるのかがわからなく、結果的に全部よくわかりません。  頭が悪くて申し訳ないのですが、解説をお願い致します。     

  • n^2-20n+91が素数となる整数nの値・・・

    すごく、基本的な問題だと思うのですが、考え方に疑問があります。 n^2-20n+91が素数となる整数nの値を求める問題です。 参考書の解説には、題式を因数分解して=(n-7)(n-13)とし、 Pが素数のとき、素因数分解したとき1×Pにしかならないので、 n-7又はn-13のどちらかが1ということで、 n-7=±1またはn-13=±1とおいています。 自分が分からないので、「±」です。素因数分解したとき1×Pにしかならないので、 n-7=1またはn-13=1とおいてしまいました。 なぜ、±1とおけるのかが分かりません。要は-1がどのようにして条件になるのかが理解 できていません。 そういうわけでございます。考え方の質問です。

  • 素数は無限に多く存在することの証明(ユークリッドの別証)を二つの添削

    ユークリッドの証明は背理法を用いた証明。 素数を有限個とするならその最大素数をpnとして素数を小さい順にp1,p2,…,pnとした時 N=p1*p2*p3*…pn + 1 全ての自然数は素因数に分解できるのでp1~pnの少なくとも一つ因数に持つはずだが、どれで割っても1あまる。これはpnが最大の素数であることに矛盾 素数は無限に存在する。 といった証明。今回はこれの別称として以下の漸化式を用いたものを解けという問題です。 ◆a_{n}:=2^(2^n) + 1, n=1,2,3,… を用いた証明 この時任意のm≠nに対しa_{m}, a_{n}は互いに素である。実際n>mの時 a_{n} - 2 = 2^(2^n) - 1     ={2^2^(n-1) + 1}{2^2^(n-1) - 1}     =a_{n-1}*(a_{n-1} - 2)     =a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 2) となるのでa_{m},a_{n}の公約数dは2の約数でなければならない。他方a_{m},a_{n}は奇数であるから(←漸化式より)d=1となる。すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ ◆正整数の列a_nを次のように定める a_{n+1} = a_{n}*(a_{n} - 1) + 1, a_{1} = 2 これを用いて素数が無限であることを示すのですが 任意のm≠nに対して a_{n} - 1 = a_{n-1}*(a_{n-1} - 1)       = a_{n-1}*a_{n-2}*(a_{n-2} - 1)       = a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 1) よりa_{n},a_{m}の公約数は1の約数でなければならない。よってa_{n},a_{m}は互いに素である。 すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ これら2つの証明はこれであっているでしょうか?

  • 数学的「割り切れる」と「因数と約数」の定義を教えてください。

    数学的「割り切れる」と「因数と約数」の定義を教えてください。 いわいる1=0.999... の手合いの問題です。(多いときは週一でくるそうですが) 以下「因数・約数」を同一視します。(また煩瑣なので整数限定を無視します) 1=0.999... この両辺を3で割ると 1/3=0.333... となりますが、この時右辺を3で割り切れたとすると、1を3で割ったことになりますから 成立しません。 当然結論として『割った時、循環小数が現れる場合割り切ったことにならない』 という結論を得ますが、そうなると約数(因数)の定義から、『3は0.999...の約数(因数)ではない』 となりますよね? つまり 1=3(0.333...) と分解することはできないとなりますが,両辺を3で割るとすると 1/3=0.333... となり、誤謬の式から真となる式がでてきます。 つまり定義やルールがあやふやだと『1を3で割り切る』ことができてしまいます(?)。 約数の定義が『ある整数を割り切ることのできる整数』であるからして 循環小数について約数の定義を当てはめるのは馬鹿らしいのですが、 因数・約数(ときに倍数)を同一視している人が多いのと、 自身『約数・因数』『割り切る』の定義がわからないので聞きました。 最後に要点をまとめますと 1 割り切れないものを因数分解できるか→0.999...=3(0.333...) 2 1の時、因数であっても「割り切れる」とできないのか    →(0.00...1は存在しないのだから極限によって『1を3で割り切る』ことはできないのか) 3 つまる所1=0.999...=3(0.333..)としたとき3で割り切れたことにならないか 当方数学が苦手なので、できる限り噛み砕いた説明を希望します。

  • 素因数分解と約数の個数

    こんばんわ。早速ですが、質問に移らさせていただきます。 例えば、36=2の2乗×3の2乗、と素因数分解できます。このように、素数の積にする事により 約数の個数が解ります。この場合、 (指数+1)×(指数+1)が、約数の個数になります。 このような公式を学んだところなのですが、具体的な整数でいろいろと試してみましたが、なぜ、そのような公式になるのかが、検討もつきません。何か、手がかりがあれば、よろしくお願いいたします。

  • 数字の件で

    2m∧2 = n∧2 ・・・(1)とする。 ※m,nは自然数 m,nを素因数分解した時の素数の個数を それぞれs,tとすると、(1)式を素因数分解 した時の素数の個数は、 2*s+1,2tになる。・・(2) という、定理があるのですが、 どうやって(2)式が導かれる のかわかりません。

  • 中学の数学問題について質問です

    こんばんは。 また分からない問題があるのですが、解説付きで教えて頂きたいです。 nは自然数で、432/nの2乗 が整数になるという。このようなnのうちでもっとも大きいものを求めよ。 ということなのですが、 432を素因数分解すると2の4乗×3の3乗になるところまでは分かり、答えがn=12というのが分かっているのですが、なぜそうなるのかが分かりません。 分かりにくくてすいませんが、解説をお願いします。

  • 小5算数 整数の性質

    どの程度まで扱うべきだと思いますか。以下私案: 1 約数と倍数:偶数と奇数,約数と倍数の意味,倍数の見分け方 2 素数と素因数分解:素数,素因数分解 3 最大公約数とその利用:2数及び3数の最大公約数とその利用 4 最小公倍数とその利用:2数及び3数の最小公倍数とその利用 5 2つの整数とその最大公約数・最小公倍数との関係

  • 素因数分解

    1、 216を出来るだけ小さい自然数でわって、ある整数の2乗になるようにしたい。どんな自然数でわればよいですか? 2、 504に出来るだけ小さい自然数をかけて、ある整数の2乗になるようにしたい。どんな自然数をかければよいですか? この問題を素因数分解を使って解くようなのですが、、、、、 わかる方いましたら教えてください。 よろしくお願いします。

専門家に質問してみよう