• ベストアンサー
  • すぐに回答を!

三角関数

0<=x<2π、0<-y<=2πとする。連立方程式 siny-cosx=-1・・・(1) sinx+cosy=-√3・・・(2) を満たすとき {1}sin(x-y)の値を求めよ。 {2}この連立方程式を解け。 という問題で{1}は1と解かりました。 また{2}のx-y=-3/2π、π/2からy=x+3/2π、 y=x-π/2も解かったのですがここから 「「y=x+3/2π、のとき(1)から2cosx=1 (2)から2sinx=-√3」」 0<=x<2πから x=5/3π このときy=19/6πとなり不適。 の特に「「 」」でくくった部分がなぜそうなるのか解かりません。 だからy=x-π/2のとき(1)から2cosx=1 (2)から2sinx=-√3にもなぜなるのか解かりません。 教えてください。 又これは個人的思うのことなのですが、三角関数って他の数学の科目に比べて難しいと思いませんか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数337
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • postro
  • ベストアンサー率43% (156/357)

ちょっとおかしいところがあるんじゃないですか? 0<=x<2π、0<-y<=2π から 0<x-y<4π ですから sin(x-y)=1 からいえることは x-y=-3/2π、π/2 じゃなくて x-y=π/2、5π/2 です。よって y=x-π/2 と y=x-5π/2 がでてきます。 どちらにしても siny=-cosx が成り立つので、(1)から2cosx=1 すなわち cosx=1/2 cosy=sinx が成り立つので、(2)から2sinx=-√3 すなわち sinx=-√3/2 がいえます。 cosx=1/2 と sinx=-√3/2 が同時に成り立つxは、0<=x<2π の範囲で x=5π/3 このとき y=x-π/2 からyを求めると 0<-y<=2π を満足せず不適。 y=x-5π/2  からyを求めると y=-5π/6 となります

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数の問題です。

    次の連立方程式を解け。(0°≦x≦y≦180°) cosx + cosy = √6/2 sinx + siny = √6/2 どういうアプローチをかけたら良いのかさっぱり分かりません。考え方だけでも教えていただけないでしょうか?よろしくお願いします。

  • 数学II 三角関数

    (1)0≦θ≦2πの時、cos2θ+sin(θ+π/6)-cos(θ+π/3)=1を解け。 (2)0≦x<2π、0≦y<2πであるとき、連立方程式   sinx+cosy=√3   cosx+siny=-1 を満たすx、yを求めよ。 解答解説ともに、よろしくお願いします。

  • 三角関数 連立方程式

    sin(x+y)=sinx-siny・・・1 cos(x+y)=cosx-cosy・・・2 1,2の連立方程式を解く問題なのですが、解答が 1・・・2sin{(x+y)/2}cos{(x+y)/2}=2cos{(x+y)/2}sin{(x-y)/2} 2・・・1-2[sin{(x+y)/2}]^2=-2sin{(x+y)/2}sin{(x-y)/2} と2倍角の公式や和積公式で変形してあり、ここまではわかるのですが、 この2式からcos{(x+y)/2}=0が得られる。となっています。ところがその途中の計算方法がわからないのです。 それで最後の答えがx=±2π/3+2mπ、y=±π/3+2nπとなっています。 回答いただければ幸いです。よろしくお願いします

その他の回答 (1)

  • 回答No.1
  • take008
  • ベストアンサー率46% (58/126)

余角公式 sin(90゜ -x)= cos x etc. 補角公式 sin(180゜-x)= sin x etc. 反角公式 sin(   -x)=-sin x etc. を使うと sin(270゜+x)=-cos x etc.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数の方程式

    三角関数の方程式 次の方程式の解き方がわかりません。 ヒントだけでも教えてください。 未知数x、yについての方程式 (sinx)(siny)=a (sinx)(cosy)=b cosx=c a,b,cは既知 よろしくお願いします

  • 文字式の連立方程式

    こんにちわ。 わからない、問題があって、だれか親切に教えてくれるとうれしいです sinx+siny=0 cosX+cosy=1 の連立方程式を解く問題です。 0≦x<2π、0≦y<2π sinx+siny=0  …(1) cosX+cosy=1  …(2) (1)より、siny=-sinx …(3) (2)より、cosy=1-cosx …(4) (3)、(4)を((sin)^2)y+((cos)^2)y=1を代入して ((sin)^2)x+(1-cosx)^2=1 まではといたのですが、 この後がわかりません。 親切にお願いします

  • 三角関数の方程式がわかりません.教えてください.

    三角関数の方程式がわかりません.教えてください. 角度は弧度法を用いるとして 「sin2x+sinx=0を満たすxの値を求めよ.」 という問題がわかりません 倍角の公式により,sin2x=2sinx*cosxなので 与式⇒2sinx*cosx+sinx=0   ⇒sinx(2cosx+1)=0 よって,sinx=0またはcosx=-1/2を満たすxを求めると (πは整数とする)x=nπ,2π/3+2nπ,4π/3+2nπ だと思ったのですが, 答えには (2nπ+1)π,2π/3+2nπ,4π/3+2nπ とありました. なぜx=nπ(動径が0またはπのところ)ではなく(2nπ+1)π(動径がπのところ)なのですか?

  • 三角関数

    0°<x<180°として、sinx+sin2x+sin3x>0の解がわかりません。それと sinx+siny=1,cosx cosy=3/4のとき、sin(x+y)/2の値がわかりません。どうか教えてください。

  • 三角関数の合成

    0≦x<2πのとき、関数 y=sinx+√3cosx の最大値、最小値を求めよ。という問題です。 sinx+√3cosx = 2sin(x+π/3) y = 2sin(x+π/3) と、合成はしたのですが、 0≦x<2πから、π/3≦x+π/3<7/3πの範囲?でどう出していったら良いのか分かりません;;; ご回答宜しくお願いします!

  • 三角関数の合成について

    √3cosx - sinx=1 (0≦x≦2π) の解く方法がわかりません。 答はx=π/6,3π/2 √3cosx-1・sinx=1 三角関数の合成を利用して 2(√3/2 cosx -1/2 sinx)=1 2・sin(x-60)=1 sin(x-60)=1/2 ここで0≦π≦2πより -60≦x-60≦120 Y=1/2 までしかわかりません。 どのように答に導くかわかりません。 おねがいします。

  • 三角関数の問題教えてください。難しいです。

     1.    sin2X+cosY=1    sinY+cos2X=1 の連立方程式を解け。(0≦X≦2π、0≦Y≦2π    2.    nを奇数としf(x)=|sin 2π・x/n |とする。    (1)集合{f(k)|kは整数}は何個の要素をもつか    (2)mをnと互いに素な整数とすると集合{f(mk)|kは0≦k≦(n-1)/2} はmによらず一定であることを示せ。  急いでいます(汗) よろしくお願いします。                      

  • 三角関数の問題について

    0≦x<2πでsinx≧sin(x-π/3) を解く過程でsinx-(sinx×cosπ/3-cosx×sinπ/3)≧0から1/2sinx+√3/2cosx≧0になる解き方が分かりません。分かりやすく教えてくださいおねがいします!

  • 三角関数

    x,yは-π/2<x<π/2,-π/2<y<π/2の範囲にある0でない実数で次の等式       sin^3x+sin^3y=3√15/32              siny/sinx+sinx/siny=3      を満たすとする このときのx+yの値を求めよ この問題が解けなくて困っています。 どなたか解答お願いしますm(__)m

  • 三角関数で範囲を求める

    関数 f ( x ) = ( sinx - 1 ) ( cosx - 1 ) について、次の問いに答えよ。 問、sinx + cosx = t とおくとき、tのとり得る値の範囲を求めよ。 この解答で三角関数の合成の公式が使われているのですが、解説では t = sinx + cosx = √2 * sin *( x + π/4 ) となっています。 自分で公式を当てはめるとπ/4にあたる部分は1となってしまうのですが、なぜπ/4なのですか?