• ベストアンサー
  • 困ってます

連立三角方程式

角度の範囲を絞るところがわからないので質問します。 問、0°≦x<360°,0°≦y<360°の範囲で次の連立方程式を解け。 sinx+siny=1・・・(1),cosx-cosy=√3・・・(2) (1)からsinx=1-siny・・・(1)' -1≦siny≦1より、1-siny≧0であるからsinx≧0 したがって0°≦x≦180°・・・(3) (2)からcosx=√3+cosy・・・(2)' -1≦cosy≦1より、√3+cosy>0であるからcosx>0 ここがわからないところです。したがって 0°<x<90°,270°<x<360°・・・(4) 自分はcosxは1になることもあるので、0°≦x<90°だと思いました。 また、√3+cosy≧√3-1なので、cosx≧√3-1だからxの範囲はさらに絞られるのではと思いました。 解答では、(3)と(4)の共通範囲をとって、0°<x<90°とし、(1)'(2)'の両辺を平方し、辺辺加えて √3cosy-siny+2=0 ,siny=√3cosy+2・・・(5) 上記のようにして、siny>0 より 0°<siny<180°(5)の両辺を平方して、sin^2y=1-cos^2yを代入して整理して(2cosy+√3)^2=0,cosy=-√3/2これを(2)’に代入してcosx=√3/2 xとyの範囲に注意して、y=150°、x=30°が答えでした。 どなたか、cosx>0のとき0°<x<90°となることを教えてください。お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数183
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • info33
  • ベストアンサー率50% (260/511)

> 0°≦x≦180°・・・(3) > 0°<x<90°,270°<x<360°・・・(4) 0°≦x<90°, 270°<x<360 ... (4') の方が正しいですね。 >自分はcosxは1になることもあるので、0°≦x<90°だと思いました。 その通りです。 >また、√3+cosy≧√3-1なので、cosx≧√3-1だからxの範囲はさらに絞られるのではと思いました。 これはあくまでも解を絞るための必要条件です。 解の範囲が絞られればいいのです。 解の評価は <<問、0°≦x<360°,0°≦y<360°の範囲で次の連立方程式を解け。 sinx+siny=1・・・(1),cosx-cosy=√3・・・(2) >> を満たしていると確認できて, 十分条件といえます。 確認したくない のであれば,すべて同値変形により, 解を導く必要があります。 --- cosx=√3-1の解は x=42.9414028648799... , 317.058597135120... なので 0°≦x<42.95°, 317.05°<x<360°・・・(4'') >cosx>0のとき0°<x<90°となることを教えてください。 0°<x<90° は間違いです。→ 0°≦x<90°

共感・感謝の気持ちを伝えよう!

質問者からのお礼

必要条件や十分条件についても解説してくださり、ありがとうございます。

関連するQ&A

  • 文字式の連立方程式

    こんにちわ。 わからない、問題があって、だれか親切に教えてくれるとうれしいです sinx+siny=0 cosX+cosy=1 の連立方程式を解く問題です。 0≦x<2π、0≦y<2π sinx+siny=0  …(1) cosX+cosy=1  …(2) (1)より、siny=-sinx …(3) (2)より、cosy=1-cosx …(4) (3)、(4)を((sin)^2)y+((cos)^2)y=1を代入して ((sin)^2)x+(1-cosx)^2=1 まではといたのですが、 この後がわかりません。 親切にお願いします

  • 三角関数 連立方程式

    sin(x+y)=sinx-siny・・・1 cos(x+y)=cosx-cosy・・・2 1,2の連立方程式を解く問題なのですが、解答が 1・・・2sin{(x+y)/2}cos{(x+y)/2}=2cos{(x+y)/2}sin{(x-y)/2} 2・・・1-2[sin{(x+y)/2}]^2=-2sin{(x+y)/2}sin{(x-y)/2} と2倍角の公式や和積公式で変形してあり、ここまではわかるのですが、 この2式からcos{(x+y)/2}=0が得られる。となっています。ところがその途中の計算方法がわからないのです。 それで最後の答えがx=±2π/3+2mπ、y=±π/3+2nπとなっています。 回答いただければ幸いです。よろしくお願いします

  • 三角比 連立方程式

    0゜≦x≦180゜、0゜≦y≦180゜とする。 連立方程式 cos^2x + sin^2y =1/2 sinxcosy=3/4 を解け。 (答案) 第1式から (1-sin^2x)+(1-cos^2y)=1/2 よって sin^2x+cos^2y =3/2……① 第2式は sinxcosy =3/4……② 【②の両辺を2乗して、①に代入すると sin^2x(3/2-sin^2x)=9/16】 整理して 16sin^4x-24sin^2x+9=0 よって (4sin^2x-3)^2=0 ゆえに sin^2 =3/4 0゜≦x≦180゜から sinx≧0で、 sinx=√3/2 ゆえに x=60゜、120゜ ②から √3/2cosy= 3/4 で、cos=√3/2 ゆえに y=30゜ 質問したいのは、【 】でくくった所はどのようにして計算されているのかということです。 よろしくお願いしますm(_ _)m

その他の回答 (3)

  • 回答No.4

No.3です。連立方程式を解く過程で不十分な点がありましたので、訂正します。失礼しました。 tan((x-y)/2)=-√3 …(3) 0°≦x<360°,0°≦y<360°…(4)だから、-180°<((x-y)/2)<180°となり、 この範囲で(3)を満たすのは((x-y)/2)=-60°すなわちx-y=-120°…(5)のみ  と書いてしまいましたが、 これは正しくなく、((x-y)/2)=120°すなわちx-y=240°も(3)は満たします。 ただしこれを(1)'に代入するとsin((x+y)/2)=-1 となりますが、0°≦((x+y)/2)<360°の範囲でこれを満たすのは、((x+y)/2)=270°つまりx+y=540°しかなく、x-y=240°と連立させるとx=390°となって0°≦x<360°という指定された解の範囲をはみ出すので、これは不適です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

訂正ありがとうございます。

  • 回答No.3

角度の範囲を絞っているのは、解の範囲を限定するためですが、確かにあまりわかりやすくないですね。同値変形で素直に方程式を解いた方がわかりやすいかもしれません。この場合でも解のx,yの値を与えられた範囲で求めていることは示す必要があるでしょうけれど。 和差の公式から sinx+siny=1…(1) より2sin((x+y)/2)cos((x-y)/2)=1…(1)' cosx-cosy=√3…(2)より-2sin((x+y)/2)sin((x-y)/2)=√3 …(2)' (2)'÷(1)'よりtan((x-y)/2)=-√3 …(3) 0°≦x<360°,0°≦y<360°…(4)だから、-180°<((x-y)/2)<180°となり、 この範囲で(3)を満たすのは((x-y)/2)=-60°すなわちx-y=-120°…(5)のみ これを(1)'に代入するとsin((x+y)/2)=1 、(4)から0°≦((x+y)/2)<360°となり この範囲でこの式を満たすのは((x+y)/2)=90°すなわちx+y=180°…(6)のみ ((5)+(6))÷2 よりx=30°(6)に代入してy=150° 答えx=30°y=150°

共感・感謝の気持ちを伝えよう!

質問者からのお礼

和差の公式を使った解き方の紹介、ありがとうございます。

  • 回答No.1

第一式から、0≦x≦pi 、第二式より、 √3 - 1≦cos(x)≦√3+1 より、0≦x<pi/4, or (7/4)pi<x<2pi. よって、0≦x<pi/4. -------------------- ※この問いについては、両式の平方の和をとり、cos(x+y)=-1. が出ます。これより、x+y=pi, 3pi.... これが「必要条件」からのものです。 これを利用するも一法です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お返事ありがとうございます。別解の紹介もありがとうございます。

関連するQ&A

  • 考え方あってますか?

    「0≦x≦2π、0≦y≦2πのとき cosx-siny=1かつcosy+sinx=-√3を解け。」という問題を解いたのですが考え方があってるか見てください。特に確かめてほしいのは⇔や⇒の使い方があってるかとか本当に⇔や⇒でいいのかです。 解答は cosy+sinx=-√3        (cosx-siny)^2=1 cosy+sinx=-√3・・・(1) ⇒ (cosy+sinx)^2=3・・・(2)⇔sin(x-y)=1・・・(3)⇔x-y=2/π,-2/3π・・・(4) (2)⇔(3)⇔(4)(これは(2)(3)(4)を満たすx,yの組み合わせの集合は全て同じ。という意味ですよね?)だから(1)⇒(4)。 (1)⇒(4)の意味するところは(1)が成り立てば必ず(4)が成り立つということ。 集合の包括関係で言えば0≦x≦2π、0≦y≦2πの範囲で(4)を満たすx,yの組み合わせの集合の中に(1)を満たすx,yの組み合わせの集合があるということだから (4)と同値のx=y+2/π,y-2/3π・・(5)は(1)でも成り立っている? だからあとは(5)を(1)に代入して (1)⇔ cos(y+π/2 , -3/2π)-siny = 1 cosy+sin(y+π/2,-3/2π)=-√3cosy+cosy=-√3  ⇔ -siny-siny=1 cosy+cosy=-√3 これらを同時に満たすyはy=7/6π。(5)からx=5/3π(x,y)=(5/3π,7/6π) 考え方あってますか? . この質問に補足する.

  • 三角関数の問題です。

    次の連立方程式を解け。(0°≦x≦y≦180°) cosx + cosy = √6/2 sinx + siny = √6/2 どういうアプローチをかけたら良いのかさっぱり分かりません。考え方だけでも教えていただけないでしょうか?よろしくお願いします。

  • 連立方程式の解き方

    下記【問題】のIとJの値を求めたいのですが、sin等が入っていて解き方が分かりません。連立方程式を使えば良いと思うのですが、なんだか混乱してしまって....。 【問題】 I=1/2(sinx-cosx)e^x J=1/2(sinx+cosx)e^x 誰かこの問題の解き方教えてください~! よろしくお願いします。

  • 三角関数

    0<=x<2π、0<-y<=2πとする。連立方程式 siny-cosx=-1・・・(1) sinx+cosy=-√3・・・(2) を満たすとき {1}sin(x-y)の値を求めよ。 {2}この連立方程式を解け。 という問題で{1}は1と解かりました。 また{2}のx-y=-3/2π、π/2からy=x+3/2π、 y=x-π/2も解かったのですがここから 「「y=x+3/2π、のとき(1)から2cosx=1 (2)から2sinx=-√3」」 0<=x<2πから x=5/3π このときy=19/6πとなり不適。 の特に「「 」」でくくった部分がなぜそうなるのか解かりません。 だからy=x-π/2のとき(1)から2cosx=1 (2)から2sinx=-√3にもなぜなるのか解かりません。 教えてください。 又これは個人的思うのことなのですが、三角関数って他の数学の科目に比べて難しいと思いませんか?

  • 数学II 三角関数

    (1)0≦θ≦2πの時、cos2θ+sin(θ+π/6)-cos(θ+π/3)=1を解け。 (2)0≦x<2π、0≦y<2πであるとき、連立方程式   sinx+cosy=√3   cosx+siny=-1 を満たすx、yを求めよ。 解答解説ともに、よろしくお願いします。

  • 連立方程式の解き方

    次のような、(1)、(2)から成る連立方程式があります。 2x^2 -x -6 = 0 … (1)  x^2 +x -12=0 … (2) これを解くとすると、 辺々足して  3x^2 -18 = 0 -18を移項して  3x^2 = 18 両辺を3で割って  x^2 = 6 平方根をとって   x = ±√6 別のやりかたもやってみました。 (1)、(2)でx^2をXとおくと、 2X -x -6 = 0 … (3)  X +x -12=0 … (4) (4)をXについて解くと、 X=-x +12 これを(3)に代入すると  2(-x +12) -x -6 = 0 展開すると        -2x +24 -x -6 = 0 整理すると    -3x +18 = 0 よって      -3x = -18 両辺を-3でわると  x = 6 ここでおかしいことは、1番目のやりかたと2番目のやりかたで解が違うことです。 また、私の計算では、いずれの解ももとの方程式を満たさないようです。 どこを計算間違いしているのでしょうか。 私は何度も見直しましたが、計算間違いは見つかりませんでした。 辺々足したり、代入したりするところに問題があるのでしょうか。 辺々足したり代入したりするのは、連立方程式を解くときによく使われる手段ですよね。 でも、この連立方程式の場合は、そのようなことをしてはいけないのでしょうか。 もしそうだとしたら、 どのような連立方程式なら辺々足したり代入したりできて、 どのような連立方程式の場合は辺々足したり代入したりができないのでしょうか。

  • どなたか解説 おねがいします

    連立方程式 cosX+sinY=a sinX+cosY=√3 (ただしXは0以上Π未満 Yは0以上Π未満 aは整数) が解を持つとき a, X ,Y の値を それぞれ求めよ aの値がなかなか出ないので 困っています どうかよろしくお願いします

  • 連立方程式が解けないので教えてください。

    連立方程式が解けないので教えてください。 以下の連立方程式のA、またはBについて解きたいのですが、1つ目の式をAについて解いてから2つ目の式に代入したところから手がつけられません。 テキストによればA=23.62°、B=33.33°となるらしいのですが、数値に落とす前の形まで式変形することができませんでした。 なるべく途中式を示してください。よろしくお願いします。 1-2cos(3A)+2cos(3B)=0 1-2cos(5A)+2cos(5B)=0

  • 三角関数の方程式

    三角関数の方程式 次の方程式の解き方がわかりません。 ヒントだけでも教えてください。 未知数x、yについての方程式 (sinx)(siny)=a (sinx)(cosy)=b cosx=c a,b,cは既知 よろしくお願いします

  • 連立方程式が苦手です。ご助力下さい。(高3)

    初めまして。高3で連立方程式が理解出来ていないことが致命的だということに気が付きました。よろしければ以下の二点の問題の躓いている部分を解答までアプローチして下さい。 1)ax^2 - 5x + b = 3x^2 + cx - 2 がxについての恒等式となるように、定数a b cを定めよ。 b = -2 a - 5 + b = 3 + c -2 a + 5 + b = 3 - c - 2 2) μN=T2cos30°…(1)  N+T2sin30°=mg …(2) どちらも連立方程式を使う事は分かって連立方程式を使うまでは分かるんですが、計算方法が分かりません。 (1)は解釈の仕方が不安です。「b=-2が分かっているから下二つの式のbに-2を代入する…」までは何となく分かります。そうすると二番目の式は「a - 7 = 3 + c -2」、三番目は「a + 3 = 3 - c - 2」となります。ここまでは良いんですが、この先 どう計算すれば良いかが分かりません。 (2)は物理の問題です。教材には「(1).(2)は連立方程式となっていて、今の場合は張力T2を出したいからNを消去していって、しばらく計算をやれば… 『T2=2μ/√3+μ mg』となる」と書かれているんですが、(1)同様どうやって連立方程式を解けば良いかが分かりません。 頭のなかに入っている連立方程式の計算方法は式を上下に並べて引いたり足したりしていく…という具合なんですが、そこが分かりません。解いていく順序を1つずつ分かりやすく教えて下さい。 よろしくお願いします。