• 締切済み
  • 困ってます

考え方あってますか?

「0≦x≦2π、0≦y≦2πのとき cosx-siny=1かつcosy+sinx=-√3を解け。」という問題を解いたのですが考え方があってるか見てください。特に確かめてほしいのは⇔や⇒の使い方があってるかとか本当に⇔や⇒でいいのかです。 解答は cosy+sinx=-√3        (cosx-siny)^2=1 cosy+sinx=-√3・・・(1) ⇒ (cosy+sinx)^2=3・・・(2)⇔sin(x-y)=1・・・(3)⇔x-y=2/π,-2/3π・・・(4) (2)⇔(3)⇔(4)(これは(2)(3)(4)を満たすx,yの組み合わせの集合は全て同じ。という意味ですよね?)だから(1)⇒(4)。 (1)⇒(4)の意味するところは(1)が成り立てば必ず(4)が成り立つということ。 集合の包括関係で言えば0≦x≦2π、0≦y≦2πの範囲で(4)を満たすx,yの組み合わせの集合の中に(1)を満たすx,yの組み合わせの集合があるということだから (4)と同値のx=y+2/π,y-2/3π・・(5)は(1)でも成り立っている? だからあとは(5)を(1)に代入して (1)⇔ cos(y+π/2 , -3/2π)-siny = 1 cosy+sin(y+π/2,-3/2π)=-√3cosy+cosy=-√3  ⇔ -siny-siny=1 cosy+cosy=-√3 これらを同時に満たすyはy=7/6π。(5)からx=5/3π(x,y)=(5/3π,7/6π) 考え方あってますか? . この質問に補足する.

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数419
  • ありがとう数1

みんなの回答

  • 回答No.3

(2)と(3)の関係を (2)->(3)とすれば 解答全体の論理展開は問題ないと思う。たぶん。 ようするに 「(1)->(5)」によって必要条件(5)を導き出し、 今度はそれを利用して、 スタート地点に戻って 問題を解く。 つまり (1)⇔「(1)かつ(5)」 として問題を解くわけね。 あってるとおもう。たぶん。 --- ちなみにこの問題自体については 解答がパターン化されていて、 解法網羅型の参考書の例題によく載ってるとおもうけど、 方針としては 初めの式はxとyが混在してるので、 これを分離する方針をとる。 初めの2式を cosx=・・・ sinx=・・・ の形にし、 次に有名式 (cosx)^1+(sinx)^1=1 に代入して解いていくのね。 この解法でも解いてみて、 同じように、 必要性、十分性をかんがえてみよう。 (これも結局、まず必要条件をもとめて、 つぎにスタート地点に返って 問題を解きなおす、 というやり方になると思う)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 文字式の連立方程式

    こんにちわ。 わからない、問題があって、だれか親切に教えてくれるとうれしいです sinx+siny=0 cosX+cosy=1 の連立方程式を解く問題です。 0≦x<2π、0≦y<2π sinx+siny=0  …(1) cosX+cosy=1  …(2) (1)より、siny=-sinx …(3) (2)より、cosy=1-cosx …(4) (3)、(4)を((sin)^2)y+((cos)^2)y=1を代入して ((sin)^2)x+(1-cosx)^2=1 まではといたのですが、 この後がわかりません。 親切にお願いします

  • 連立三角方程式

    角度の範囲を絞るところがわからないので質問します。 問、0°≦x<360°,0°≦y<360°の範囲で次の連立方程式を解け。 sinx+siny=1・・・(1),cosx-cosy=√3・・・(2) (1)からsinx=1-siny・・・(1)' -1≦siny≦1より、1-siny≧0であるからsinx≧0 したがって0°≦x≦180°・・・(3) (2)からcosx=√3+cosy・・・(2)' -1≦cosy≦1より、√3+cosy>0であるからcosx>0 ここがわからないところです。したがって 0°<x<90°,270°<x<360°・・・(4) 自分はcosxは1になることもあるので、0°≦x<90°だと思いました。 また、√3+cosy≧√3-1なので、cosx≧√3-1だからxの範囲はさらに絞られるのではと思いました。 解答では、(3)と(4)の共通範囲をとって、0°<x<90°とし、(1)'(2)'の両辺を平方し、辺辺加えて √3cosy-siny+2=0 ,siny=√3cosy+2・・・(5) 上記のようにして、siny>0 より 0°<siny<180°(5)の両辺を平方して、sin^2y=1-cos^2yを代入して整理して(2cosy+√3)^2=0,cosy=-√3/2これを(2)’に代入してcosx=√3/2 xとyの範囲に注意して、y=150°、x=30°が答えでした。 どなたか、cosx>0のとき0°<x<90°となることを教えてください。お願いします。

  • 三角関数 連立方程式

    sin(x+y)=sinx-siny・・・1 cos(x+y)=cosx-cosy・・・2 1,2の連立方程式を解く問題なのですが、解答が 1・・・2sin{(x+y)/2}cos{(x+y)/2}=2cos{(x+y)/2}sin{(x-y)/2} 2・・・1-2[sin{(x+y)/2}]^2=-2sin{(x+y)/2}sin{(x-y)/2} と2倍角の公式や和積公式で変形してあり、ここまではわかるのですが、 この2式からcos{(x+y)/2}=0が得られる。となっています。ところがその途中の計算方法がわからないのです。 それで最後の答えがx=±2π/3+2mπ、y=±π/3+2nπとなっています。 回答いただければ幸いです。よろしくお願いします

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

なお, 「(2) と (3) の関係もこのままでは (2) から (3) への一方通行」というのは, (2) から 2つの式ができるはずなのに (3) では 1つしか挙げていないからです. (3) として 2つとも上げていれば必要十分になると思います.

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

とりあえず (4) の 2/π や -2/3π は明らかに違う. あと, (2) と (3) の関係もこのままでは (2) から (3) への一方通行. (3) を満たす x, y は必ず (2) を満たしますか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

(3)⇒(2)は成り立ちませんね>< (4)のは分母と分子が逆ですね・・・ ご指摘ありがとうございます!!

関連するQ&A

  • 数学II 三角関数

    (1)0≦θ≦2πの時、cos2θ+sin(θ+π/6)-cos(θ+π/3)=1を解け。 (2)0≦x<2π、0≦y<2πであるとき、連立方程式   sinx+cosy=√3   cosx+siny=-1 を満たすx、yを求めよ。 解答解説ともに、よろしくお願いします。

  • 三角関数

    0<=x<2π、0<-y<=2πとする。連立方程式 siny-cosx=-1・・・(1) sinx+cosy=-√3・・・(2) を満たすとき {1}sin(x-y)の値を求めよ。 {2}この連立方程式を解け。 という問題で{1}は1と解かりました。 また{2}のx-y=-3/2π、π/2からy=x+3/2π、 y=x-π/2も解かったのですがここから 「「y=x+3/2π、のとき(1)から2cosx=1 (2)から2sinx=-√3」」 0<=x<2πから x=5/3π このときy=19/6πとなり不適。 の特に「「 」」でくくった部分がなぜそうなるのか解かりません。 だからy=x-π/2のとき(1)から2cosx=1 (2)から2sinx=-√3にもなぜなるのか解かりません。 教えてください。 又これは個人的思うのことなのですが、三角関数って他の数学の科目に比べて難しいと思いませんか?

  • sinxとcosxの微分

    非常に初歩的な質問で情けありませんが、 以下のようにすると、cosxの微分が-sinxであることを導けません。 (sinx)'=cosx (cosx)'={sin(π/2-x)}' =(sinX)' ## X = π/2 - x とおく =cosX =cos(π/2-x) =cosπ/2×cosx + sinπ/2×sinx =sinx !!!! この導き方のどこに問題があるのでしょうか? よろしければご指摘のほどお願いします。

  • 行列

    ロール(φ)ピッチ(θ)ヨー(ψ)で回転する場合ということで、X軸→Y軸→Z軸(Z軸→X軸→Y軸ではない)という順番に回転をかけると以下のマトリクスが得られます。 つまり「-SinY」の値から、Y軸に何度回転したかが分かるわけです。 しかしこの時例えば「-SinY」が、0.5だとすると、これは30度か150度になるわけですが、一体どっちなのかという判別が付きません。 つまりCosYの値が+なのか-なのかが分かりません。 どうやって判別すればいいのでしょうか。 教えてください。 このCosYが+か-かを判別できれば、以下のマトリクスから全てを導けるのですが・・・。 CosY*CosZ, CosY*SinZ, -SinY, 0 CosX*SinY*CosZ+SinX*SinZ, CosX*SinY*SinZ-SinX*CosZ, CosX*CosY, 0 SinX*SinY*CosZ-CosX*SinZ, SinX*SinY*SinZ+CosX*CosZ, SinX*CosY, 0 0, 0, 0,   1

  • 複素関数、双曲線関数の問題

    関数w=coszで、z=x+yi,w=u+viと置く時,w=coszによってz平面状の直線"x=π/4(-∞<y<∞)"はw平面状の どのような図形に移るか (解答…双曲線2(u^2)-2(v^2)=1の右半分) u+vi=cos(x+yi)   =cosx・cos(yi)-sinx・sin(yi)   =cosx・cos(hy)-sinx・sin(hy) と直したのですが、ここからxの式をどう導くのかがわかりません そのままx=π/4を代入しても、 u+vi=(1/√2)cos(hy)-(1/√2)sinhy となり、解答の式に持っていくことができません ご教授、お願いします

  • 関数の極値

    問題:第2次導関数を利用して、次の関数の極値を求めよ。 f(x)=e^x cos x (0≦x≦2π) f ' (x) = e^x cosx - e^x sinx = e^x (cosx-sinx) f ''(x) = e^x (cosx - sinx) + e^x (-sinx -cos x) f ' (x) = 0 とすると、sinx - cosx =0 したがって、a sinθ+ b cos θ= √(a^2 + b^2) sin (θ+α) sin α= b / √(a^2 + b^2) cos α= a/ √ (a^2 +b^2) したがって、√2* sin (x-π/4) 0≦x≦2πより、-π/4 ≦ x - π/4 ≦ 7π/4 x - π/4 = 0, π すなわち x=π/4, 5π/4 f '' (π/4) = - 2/√2 * e^(π/4 ) < 0 f '' (5π/4) = 2 / √2 * e^ (5π/4) > 0 よって、f (x) は、 x = π/4 で 極大値 1/√2 * e^(π/4 ) x = 5π/4 で 極小値  - 1/√2 * e^ (5π/4) となる。 ここで質問なんですが、この f(x)=e^x cos x (0≦x≦2π) のグラフの座標のとり方が分からずに困っています。 自分で手書きで模範回答を写して書いてみたのですが、もし分かりにくかったらすみません。 それから、極大値について、グラフを見る限り、f (x) = 2πのときが最も大きいように思ったのですが。 これは間違いなのでしょうか。 教えてください、お願いします。

  • 三角関数の問題について

    0≦x<2πでsinx≧sin(x-π/3) を解く過程でsinx-(sinx×cosπ/3-cosx×sinπ/3)≧0から1/2sinx+√3/2cosx≧0になる解き方が分かりません。分かりやすく教えてくださいおねがいします!

  • 三角関数

    問(1)方程式を解く 0≦x<2πの時 cos2x=cosx cos2x=cosx cos2x-cosx=0 cos(2x-x)=0 cosx=0 ∴x=0,π/2,3π/2 だと思ったのですが、答えが違います。どこが間違っているのでしょうか? 問(2)不等式を解く 3√3sinx+cos2x-4<0 これはどうやっていいか全くわかりません。先ずsinかcosかどちらかにそろえると思うのですが… 問(3)最大値、最小値を求める。 0≦x<πの時 y=cos^2x+sinx y=cos^2x+sinx =1-sin^2x+sinx (sinx=tとおき) =-t^2+t-1 =-(t^2-t)-1 =-(t-1/2)^2+5/4 と最大値が5/4とはわかるのですが最小値はどうやって求めたらいいのでしょうか?与式に0orπを代入するのですか? 問(4)最大値、最小値を求める 0≦x<π/2の時 y=cos^2-4cosxsinx-3sin^2x これは因数分解できないと思うのですが、どうすればいいのでしょう。-4cosxsinxのところがどうしても整理できないのですが(sin,cosどちらかにそろえること) どれか一つでもいいのでよろしくお願いします。

  • 三角関数の連立方程式の解き方

    「a,bは0<a<b<2πを満たす実数とする。すべての実数xについて cosx+cos(x+a)+cos(x+b)=0 が成立するようなa,bの値を求めよ。」 この問題を解いているのですが、解答が理解できませんでした。 解答「x=0とすると 1+cosa+cosb=0、 x=π/2とすると sina+sinb=0 よってa=2π/3、b=4π/3」 となっていました。必要条件を利用して0とπ/2の場合について考えたということはわかったのですが、その後の計算の方法がわかりませんでした。sinx^2+cosx^2=1等に代入してみたのですが意味がありませんでした。何らかのヒントやアドバイスでもかまいませんので回答いただければ幸いです。よろしくお願いいたします

  • 三角関数の問題です。

    次の連立方程式を解け。(0°≦x≦y≦180°) cosx + cosy = √6/2 sinx + siny = √6/2 どういうアプローチをかけたら良いのかさっぱり分かりません。考え方だけでも教えていただけないでしょうか?よろしくお願いします。