• 締切済み

数学の問題です。お願いします。友達に頼まれたのですが・・・(3)むずい・・・

(1)定理:2つの角が等しい三角形は二等辺三角形である。 (2)定理:△ABCと△DEFにおいて、AB=DE、BC=EF、CA=FDならば、△ABC≡△DEFである。 (3)定義:垂直、垂線、垂直二等分線、直角三角形    定義:命題、仮定、結論、逆、対偶、必要、必要条件、十分、十分条件、必要十分条件、同値    定理:点Pが点A、Bから等距離にあるための必要十分条件は、Pが線分ABの垂直二等分線上にあることがである。 上記の三つの問題を「証明」するのですが、きちんと証明できません(というか解りません)。解けるかたいらっしゃいましたら、お願いしますm(__)m

みんなの回答

  • pyon1956
  • ベストアンサー率35% (484/1350)
回答No.2

(1)残ったひとつの角から、等しい二角を結ぶ辺に垂線をおろします。二つの直角三角形ができますが、直角以外の角が一組等しいので相似、さらに垂線が共有されていて等しいので合同(まとめて直角三角形の合同条件より、とするのが普通:中2の数学)ゆえに対応する辺が等しいか二等辺三角形。 とここまで書いてから気がついたのですがこれ、どういうのを公理・定義として解いているんでしょう?(2)なんか合同条件そのものなんで、通常証明したりしないんですが・・・ したがってこの解答も合同条件を使っているので正しくないかも。 前回にも書きましたけど数学は前提、定義、何を公理とし何を自明とするかがはっきりしていないと解答することが原理的に不可能です。 (3)にしても距離をどう定義しているのか文面からは判別不能です。合同条件を使えば簡単(中2程度)ですが、使っていけない(2からするとそうなのか?)場合定義がこのような言葉の羅列ではどうもならないんです。垂線とはなにか、垂直とは何か、といったことがちゃんと書いてないと。

JETER
質問者

補足

 たしかに、pyonさんが言ったように、定義が言葉羅列なので、何をどう解いたらいいのか分かりません。(2)に関しては、定義は二等辺三角形、頂角、底辺、底角だと思います。定理は二等辺三角形の二つの底角は等しい。一辺両端角より合同というのを使うのだと思います。(3)に関しては線分AB上に中点をMとしてとり何らかで示すのだと思うのですが。あとこちらの情報不足な部分もありました。。問題の文面から見て、必要条件・十分条件それぞれから証明するようです。こんな乱丁の文面ですが、もし何か分かりましたら教えてください。

  • nayu-nayu
  • ベストアンサー率25% (967/3805)
回答No.1

何らかの課題やレポートのテーマを記載し、ご自分の判断や不明点の説明もなく回答のみを求める質問はマナー違反とされています。 ご自身で証明できた所までを書いて下さい。

JETER
質問者

補足

(1)分からない (2)△ABCに△DEFを重ね合わせるように移動させて、EFをBCに重ね、Dを、BCについてAと反対側になるようにする。ここから分かりません。 (3)線分ABの中点をMとして、PA=PB⇔PM⊥ABと仮定する。PA=PBはPM⊥ABであるための十分条件である。PM⊥ABはPA=PBであるための必要条件である。よって、証明できる。 自信ありのようなので、どうかよろしくお願いします。

関連するQ&A

専門家に質問してみよう