• ベストアンサー
  • 暇なときにでも

ベクトルについて

ベクトルOPなどはOPと書きます。 三角形OABの頂点A,OからOB,ABに適当に下ろした交点をR,QとおくときARとOQの交点をPとおくとき。 OP=OA+2OB/5の時OQ,を求めよという問題です。 OP=OA+2OB/3×3/5 よって、OQ=OA+2OB/3 となるのですが何でですか?全くわからないので、詳しくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数47
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • postro
  • ベストアンサー率43% (156/357)

まず OP=OA+2OB/5 は OP=(OA+2OB)/5 のことだとすると、カッコをつけないとわからないですよ。 つぎに ABをm:nに内分する点をSとすると OS↑=(nOA↑+mOB↑)/(m+n) と表されることを思い出してください。 そうすれば OP↑=(OA↑+2OB↑)/3×3/5 と変形することによって ABを2:1に内分した点がQであり、OP↑はOQ↑{=(OA↑+2OB↑)/3}の3/5倍なのだとわかります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトルの問題

    三角形OABでAからOBに引いた直線の交点をR OからABに引いた直線の交点をQとするとき ↑OP=(↑OA+2↑OB)/5の時↑OQを求めよという問題で ↑OP=(↑OA+2↑OB)/3×3/5 ↑OQ==(↑OA+2↑OB)/3 となるのは何故ですか?全くわからないので丁寧な解説よろしくお願いします。

  • ベクトルと平面図形

    ABベクトルを「→AB」と表します。 --------------------問題------------------ △OABと→PO+3→PA+4→PB=→0を満たす内部の点Pがある。 直線OPと線分ABの交点をQとする。 →OQを→OA、→OBを用いて表せ。 ------------------模範回答----------------- →PO+3→PA+4→PB=0より -→OP+3→(→OA-→OP)+4(→OB-→OP)=→0 -8→OP=-3→OA-4→OB →OP=3→OA+4→OB/8    =7/8・3→OA+4→OB/7 よって →OQ=3→OA+4→OB/7 という問題なのですが、どうしたら「よって」になるのでしょうか? →OP=7/8→OQと言うことなのでしょうが、どのように求まるのでしょうか?

  • 数Bのベクトル

    三角形OABにおいて、辺OAを1:2に内分する点をM、線分OBを3:2に内分する点をNとし。線分AN,BM,の交点をPとおく。また。直線OPと線分ABの交点をQとする。 OP→=1/6OA→+1/2OB→なのでOQ→をOA→OB→を用いて表せ わからないので解説おねがいします

  • ベクトルの問題3

    何度も投稿してしまってすいません。 ベクトルのドリルを進めていく度に解からないところがでてきてしまって…。 基本的なベクトルの問題なので、解からなくてお恥ずかしいですが(__;) 三角形OABにおいて、OAベクトル=aベクトル、OBベクトル=bベクトルとする。 辺OAを2:1に内分する点をP、辺OBを3:2に内分する点をQ、直線BPとAQの交点をRとする。 このとき (1)OPベクトル、OQベクトル、ORベクトルをaベクトルとbベクトルを用いて表せ。 (2)OA=5、OB=6、AB=8ならば  aベクトル・bベクトル=○  |ORベクトル|=○ (1)はtとsを用いて計算してみたら OPベクトル=2/3aベクトル OQベクトル=3/5bベクトル ORベクトル=4/9aベクトル+1/3bベクトル とでました。間違っていたら指摘してください。 (2)の解き方が解かりません。教えてくださいm(__)m

  • ベクトル

    三角形OABがあり、辺OBを2:1に内分する点をC、線分ACを3:1に内分する点をDとした時、ODベクトルをOAベクトルとOBベクトルで表せ。また、直線ODとABの交点をPとする時、OPベクトルをOAベクトルとOBベクトルで表せ。 OCベクトル=2/3(OBベクトル)を用いて、ODベクトル=1/2(OBベクトル)+1/4(OAベクトル)となる。ここでOPベクトル=kODベクトルと置いてみたのですが、ここから後の考え方が分かりません。どなたか、OPベクトルの求め方を教えて下さい

  • ベクトルの問題です。あと一歩だと思うのですが・・

    こんばんは!ベクトルの問題で分からないのがあったので質問です。 △OABの3辺の長さをOA=OB=√5、AB=2とする。また、→OA=→a,→OB=→bとする。 というのが前置きで、 (1)内積→a*→bを求めよ。 (2)点Bから直線OAにおろした垂線と直線OAとの交点をPとするとき、→OPを→aを用いて表せ。 (3)(2)において、点Oから直線ABにおろした、垂線と直線BPとの交点をQとするとき、→OQを→aと→bを用いて表せ。 という問題なのですが、(1)、(2)はそれぞれ、→a*→b=3、→OP=3/5→aと求められました。 ところが問題は(3)で、恐らく二通りの表現で式をつくり、係数を比較するのだと思ったのですが、 OQ=kORとおいた方のORの表し方が分かりません。 というかその方法があっているかどうかも分からないので、できれば(3)は1から教えていただけるとありがたいです。 よろしくお願いします。

  • ベクトルのセンター試験の過去問です。

    ベクトルのセンター試験の過去問です。 三角形OABで辺OAを3:2に内分する点をC、辺OBを1:2に内分する点をDとする。 (1)線分ADとBCの交点をP、直線OPと辺ABの交点をQとすると、OPベクトルをOAベクトルとOBベクトルで表せ。またOQベクトルをOPベクトルを使って表せ。 (2)線分AC上に点E、線分BD上に点Fをとり、線分EFが点Pを通るようにする。OEベクトル=αOCベクトル、OFベクトル=βODベクトルとすると、α,βの間には1/?(?/α+?/β)の関係が成り立つ。 (1)はできましたが(2)が分かりません。 よろしくお願いしますm(_ _)m

  • 平面上の三角形(ベクトル)

    「平面上の三角形OABは、OA→=a→、OB→=b→とおくとき、|a→|=1、|b→|=√2、a→・b→=1/2を満たすとする。辺ABを1:2に内分する点をPとし、直線OPに関してAと対称な点をQ、OQの延長とABの交点をRとおく。 (1)OQ→をa→とb→であらわせ。 (2)OR→をa→とb→であらわせ。 (3)三角形PQRの面積を求めよ。」 という問題を解いています。 図示はてきたのですが、どこからOQ→をあらわせばよいのかがわかりません。 アドバイスいただけると助かります。 回答宜しくお願いします。

  • ベクトルの質問です。

    △OABにおいて、OA=3 OB=√3 cos∠AOB=-√3/3である。辺ABを1:2に内分する点をPとする。また、OAベクトル=aベクトル OBベクトル=bベクトルとする。 (1)内積aベクトル・bベクトルの値をもとめよ。また、OPベクトルをaベクトル bベクトルを用いてあらわせ。 (2)OQベクトル=tOPベクトル(tは実数)となる点Qをとる。AQ⊥OQとなるとき、tの値をもとめよ。 (3直線OPに関して点Aと対称な点をCとする。)直線ABと直線OCとの交点をRとするとき ORベクトルをaベクトル bベクトルを用いて表せ。

  • ベクトルと平面図形

    三角形OABにおいて、OA=2, OB=1, ∠AOB=60°とする。 辺ABを1:2に内分する点をPとし、BからOPに垂線BQを引き、 BQの延長とOAとの交点をRとする。 また→a=→OA,→b=→OBとする。 (1)→a・→bを求めよ。また→OPを→a,→bを用いて表せ。 (2)→BRを→a,→bを用いて表し、l→BRlを求めよ。 →はベクトルの事です。 (1)は→a・→b=1  →OP=2/3→a+1/3→b ということは、わかったんですが (2)が、→BR⊥→OPより→BR・→OP=0 ということまでしかわからないので、ぜひ教えて下さい。 お願いします。