• ベストアンサー

円に内接する二等辺三角形

円に内接する二等辺三角形において、頂点から底辺に垂線を下ろすと、この垂線が円の中心Oを通り、また底辺を二等分するのはなぜですか?

質問者が選んだベストアンサー

  • ベストアンサー
noname#222520
noname#222520
回答No.1

円に内接する二等辺三角形を△ABC、AB=ACとし、頂点Aから底辺BCに下した垂線の足をHとすると、 直角三角形ABHと直角三角形ACHにおいて、 等しい弦に対する円周角の大きさは等しいので、∠ABH=∠ACH ∠AHB=∠AHC=90°であるから、∠BAH=∠CAH AHは共通 よって、直角三角形ABHと直角三角形ACHは、2辺とその間の角がそれぞれ等しく(1辺とその両端の角がそれぞれ等しく)合同 対応する辺の長さはそれぞれ等しく、BH=CH(底辺を二等分) 円の中心Oから底辺BCに下した垂線の足をH´とすると、 直角三角形OBH´と直角三角形OCH´において、 OB=OC(半径) OH´は共通 三平方の定理から、 BH´^2=OB^2-OH´^2 CH´^2=OC^2-OH´^2 これから、BH´=CH´ 以上から、HとH´は一致するので、この垂線は円の中心Oを通る

nanpure7
質問者

お礼

とても解りやすいご回答、どうも有難うございました。

関連するQ&A

  • 外接円と内接円

    もう一つ分からない問題があったので教えてください。 AB=ACである二等辺三角形ABCにおいてBC=2であり、頂点AからBCに下ろした垂線の長さが2であるとする。 このとき△ABCの外接円と内接円の半径を求めよ。 という問題です。 お願いします。

  • 円に内接する四角形に内接する円

    円と接線に関する問題がわからないので質問します。 半径5cmの円Oと半径2cmの円O'の共通外接線Lと共通内接線Mとがあり。円O,O'と接線Lとの接点P,P'とし、円O,O'と接線Mとの接点R,Sとする。LとMの交点Qとして、OO'=9cmとするとき、四角形OPQRに内接する円の半径を求めなさい。という問題です。 解説でわからない点は、四角形OPQRに内接する円の中心はOQ上にあるということです。半径5cmの円Oと四角形OPQRに内接する円の相似の中心はQだからかと思いましたしが、納得できません。どなたか、四角形OPQRに内接する円の中心はOQ上にあるということを説明してください。お願いします。

  • 正四面体の内接球

    正四面体の内接球の中心は、外接球の中心でもある。 これが証明できません。どなたかベクトルとか使わない証明をご存知の方、教えてください。 逆の命題、「正四面体の外接球の中心は内接球の中心でもある」は以下のように示すことができると思います。 正四面体をABCD 外接球の中心をO Oから面ABCに下ろした垂線の「足」をW Oから面ABDに下ろした垂線の足をX Oから面ACDに下ろした垂線の足をY Oから面BCDに下ろした垂線の足をZ 外接球の半径をRとする。 (補題)外接球の中心から各面に下ろした垂線とその面との交点は面の重心である。 外接球であるから、OA=OB=OC=OD=R 面ABCを考える △OWAと△OWBと△OWCで OA=OB=OC (=R 外接球の半径) OW=OW=OW (共通) ∠OWA = ∠OWB = ∠OWC = 90°(垂線だから) 斜辺ともう一つの辺が等しいので △OWA≡△OWB≡△OWC ∴AW=BW=CW Wは正三角形ABCの外心である。 正三角形において、外心と内心と重心は一致するから、Wは重心でもある。 他の3つの面も同様に考えられるから、X,Y,Zはそれぞれ重心となる。 (本題) △OWAと△OYAを考えて、 AW=AY (合同な正三角形の重心と頂点との距離) AO=AO (共通) ∠OWA = ∠OYA = 90°(垂線だから) ∴△OWA≡△OYA ∴OW=OY 同様に、OW=OX=OY=OZ ゆえに、Oは内接球の中心である。 このとき、Oと各面との接点はW,X,Y,Zである。 逆は難しくてどうしてもわかりません。内接円の類推で、内接球の中心が二等分「面」上にあることを使うのだと思うのですが。 よろしくお願いします。

  • 内接円の問題

    3点 A(0,4) B(2,0) C(-1,3)を頂点とする△ABCの内接円の方程式はどのように求めればよいのでしょうか。 内接円の半径は求めることが出来るのですが、円の中心の出し方がいまいちよくわかりません。 出来れば解答とその過程、考え方を教えていただけると助かります。

  • 2等辺三角形に内接する円の面積と底辺

    AB=AC=1である2等辺三角形ABCに内接する円の面積を最大にする底辺の長さの求め方で、自分の解き方の間違いがわからないので質問します。 内接円の半径をr、底辺の長さをx(x>0)として、∠B=∠C=θ(0<θ<π/2)とおくと、3角形ABCの面積は2通りにあらわせ、△ABC=(1/2)*(1+1+x)*r,△ABC=(1/2)*1*x*sinθ この2つからr=(x*sinθ)/(x+2) 内接円の面積は、π*r^2からr^2が最大のとき最大となる。f(x)=r^2={(x*sinθ)/(x+2)}^2 と置いて、f'(x)=sin^2θ*(4x/(x+2)^3)となり、0<θ<π/2からsin^2θ>0より、 4x/(x+2)^3=0を解こうとしてもx>0から4x/(x+2)^3>0となり、f'(x)=0となるxは求められません。 sinθを使ったのが計算間違いの理由かと思うのですが、定数として扱ってはいけない 理由がわかりません。どなたか間違いを指摘してください。 解説では、内接円の半径をr。底辺の長さを2xとして、3角形の3辺の条件から |1-1|<2*x<1+1から0<x<1、 3角形ABCの面積の1つめは、(1/2)*√(1-x^2)*2xとし、2つめは(1/2)*(1+1+2x)*r,、2つからr={x*√(1-x^2)}/(1+x)を導き、 f(x)=r^2=(x^2-x^3)/(1+x)、f'(x)=-{2x*(x^2+x-1)}/(1+x)^2 、f'(x)=0となるxは0<x<1から x=(√5-1)/2 あとは増減表を書いて、x=(√5-1)/2のとき面積は最大となる。 底辺のながさは2x=√5-1でした。

  • 正四面体とその外接円

     正四面体の外接円や内接円の中心はどうして四面体の頂点から 底面に下ろした垂線上にあるって分かるのですか?

  • 円に内接する正多角形

    原点を中心とする単位円に内接する正多角形を考えます。 この時、正多角形の頂点が有理点のみよりなるものって無数に存在しますか。 ただし正多角形は単位円にどのように内接させてもいいものとします。

  • 内接三角形の面積

    円に内接している三角形の面積の求め方について教えてほしいです。 円に内接している三角形をABCとおき、円の中心OからBCに垂線をおろし、 その交点をH、距離をt、そして半径をrとする。 このとき、三角形の面積は1/2×2√(r^2-t^2)×(r+t)でいいのでしょうか? (r+t)についてどのような三角形のときにも応用できるかどうかが いまいちよくわからないので教えてほしいです。よろしくお願いします。

  • 円に内接する四角形

    △ABCの垂心をHとし頂点A、B、Cから対辺、またはその延長への垂線の足をそれぞれK、L、Mとする △ABCが鋭角三角形のとき点Hは△KLMの内心であることを証明せよ 答えに四角形BCLMが円に内接すると書いてあるのですが、わかっているのは∠ALB=∠CLB=∠AKC=∠AKB=∠BMC=∠AMC=90゜のみで∠BMLと∠BCL、∠MBCと∠CLMは分からないはずです なのに何故円に内接する四角形なのでしょうか? 教えてください

  • 二等辺三角形の性質(定理)の逆についてです。

    二等辺三角形の性質(定理)である「二等辺三角形の頂角の二等分線は底辺を垂直に2等分する。」がありますが、逆に「二等辺三角形の底辺を垂直に2等分した線分は頂角を二等分する。」っていえますか?