• ベストアンサー
  • 困ってます

二等辺三角形で・・・

二等辺三角形ABC(AB=AC)の頂点Aから対辺BCへ垂線ADをひいたときにBD=CDとなることの理由は、「二等辺三角形の性質だから」で済ませてよいのでしょうか。 それとも、「△ABDと△ACDの合同」を示さなければいけないでしょうか。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数253
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

ABDと△ACDの合同の方だと思います。 ちょうど、今日授業で先生が言っていました。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

とってもタイムリーで良かった!! ありがとうございました。

その他の回答 (2)

  • 回答No.3

みなさんも書かれていますが、「△ABDと△ACDの合同」を示してください。 どの辺とどの辺の長さが等しいのか、どの角とどの角が等しいのか一つ一つ考えて、3つの合同条件から当てはまるものを合同である証明の理由として挙げればOKです。 どれとどれが等しいかは大体検討がつくと思いますけど…。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

直角三角形の合同条件「斜辺と他の一辺が等しい」を理由にして証明しようと思っています。丁寧にアドバイスしてくださってありがとうございました。

  • 回答No.2

合同を証明しなくてはいけません。 「二等辺三角形の性質だから」だからですむなら問題にだされませんよ。中学の数学はやり方さえきちんと暗記していればできると思うので、頑張ってください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

>「二等辺三角形の性質だから」だからですむなら問題にだされませんよ。 おっしゃる通りですよね。この言葉を忘れずに、丁寧に考えていきます!ありがとうございました。

関連するQ&A

  • 二等辺三角形の両底角が等しい証明について

    AB=ACの二等辺三角形ABCにおいて、 ∠B=∠Cを証明するのに、普通は(?) ∠Aの二等分線とBCとの交点をDとして、 △ABD≡△ACDを示して証明するようですが、 補助線を引かずに直接、△ABCと△ACBという「2つ」の三角形を考え、 「二辺夾角相等」より△ABC≡△ACB を示して、 ∠B=∠C である、という証明ではいけないのでしたっけ? 確か、いけないと聞いた気がしますが、理由を忘れてしまいました! また、ユークリッドの『原論』での証明も補助線を使った証明だったような気がしますし、『原論』を学ぶ者はまずこの証明のところで挫折する、というような事を読んだ気がしますが・・・ (嘘だったら、スミマセン。) どうぞよろしくお願いします!

  • 二等辺三角形の底角が等しい証明について

    よろしくお願いします。24歳中学数学の教員をしています。 AB=ACである二等辺三角形において ∠B=∠Cであることを証明しなさいという授業をするのですが 中学1年で習った、線対称であることを利用すると 「対称軸で2つに折ったら重なるから、∠B=∠Cである」を 使用してはいけない理由がどうしても分かりません。 中学1年で習った事柄は使わないことが前提なのでしょうか。 そうだとしたら、子どもにはどう説明したらいいのでしょうか。 もし、仮に対称軸を使わなかったとして ∠Aの二等分線を引く、BCの中点と頂点Aを結ぶ、頂点Aから垂線を引く 等とした回答がありますが、「BCの垂直二等分線を引く」ではなぜダメなのでしょうか。 もし「二等辺三角形」とわかっていなければ、 頂点Aと交わらない可能性もあるかもしれませんが 「二等辺三角形」の定義を利用する…となれば、頂点Aは必ず通りますよね。 子どもに教えるときに、自分自身があやふやなままで、困っています。 どうか助けて下さい、よろしくお願いします。

  • 二等辺三角形の角度

    とある国立の問題です。 正直、ぜんぜんわかりませんでした。 解説がほしいです。 問、 AB=ACである二等辺三角形ABCにおいて∠ABCの二等分線を引き、辺ACとの交点をDとするとAD=BDとなった。 ∠BACの大きさを求めよ。 答え 36度

  • この二等辺三角形の角度を求めてください

    この三角形は AB=ACの二等辺三角形で頂角が20°です。 AD=BCのとき、∠ADBの大きさを教えてください。

  • 二等辺三角形

    四角形ABCDは円に内接しEは直線AB、CDの交点、Fは直線AD、BCの交点である ∠E、∠Fの二等分線を引いて、∠Eの二等分線とADの交点をI、BCとの交点をJ、∠Fの二等分線とDCの交点をH、ABの交点をGとする このとき△FIJは二等辺三角形になるらしいのですが何故なるのでしょうか? 質問がわかりにくいことがあるかも知れませんが伝わるよう努力しますのでよろしくお願いします

  • 二等辺三角形の

    図のように、AB=ACの二等辺三角形ABCの辺AB,ACの中点をそれぞれD,Eとし、線分BE,CDの交点をFとする。 BE=BCであるとき、次の各問に答えなさい。 (1)∠CBE=x°とするとき、∠ABEをxの式で表しなさい。 (2)AB=a、BC=bとするとき、aとbの間に成り立つ関係式を求めなさい。 (3)△ABCと△CEFの面積比を簡単な整数で表しなさい。 という問題です。お願いします。

  • 二等辺三角形の角度を求める問題

    「AB=ACである二等辺三角形ABCにおいて、∠ABCの二等分線を引き、辺ACとの交点をDとするとAD=BDとなった。∠BACの大きさを求めよ。」 現在この問題をやっていて、答えは「36°」とあるのですが、この答えの求め方が分からず悩んでいます。 しかも、この問題は元々図が載っていないので、解き方以前に具体的にどういう図なのかということがつかめていません。点Aから辺BCの真ん中につながる線を一本引くということでしょうか? でも「辺ACとの交点をDとする」とあるので、もう一本、点Bから辺ACの真ん中につながる線をひくということなのでしょうか?なんだかよく分からなくなってきてしまいました。 こちらの問題の意味が分かり、解き方も分かるという方がいらっしゃいましたら、よろしくお願い致します。

  • 円に内接する二等辺三角形

    円に内接する二等辺三角形において、頂点から底辺に垂線を下ろすと、この垂線が円の中心Oを通り、また底辺を二等分するのはなぜですか?

  • 二等辺三角形 三角比

    Bを左下、Cを右下の底角 Aを頂角とした二等辺三角形ABCがあります。 ABとACの長さは70m、∠ABCと∠ACBは40°という指定があり、このときBCの長さを求めよ。という問題があります。BCをXとおきます。 また、必要であれば、次の三角比を利用すること。とあります。 sin40°=0,6428 cos40°=0,7660 tan40°=0,8391 与えられた情報のなかで、今まで習ってきた直角三角形上、底辺と斜辺を結ぶ角が45°30°60°のときに利用できる三角比の公式、ないしは単位円をつかった定義、鈍角と補角・余角の公式が、うまく利用できる方法がみつからず、困っています。 また向かい合う辺と2角の値がわかっているので、正弦定理をうまく利用できないかと思い、 二等辺三角形ABCを半分カットした△ABH(BCの中点をHとした直角三角形)を抜き出して、BHをX とおいて、 X/sin50°=70/sin90° X=70×sin50°/1 X=・・・ とがんばりましたが、sin50°の値はわかりませんし、自力で求めるレベルの問題でもないかと思われます。 どなたか、解法のコツを御教授いただけないでしょうか?

  • 二等辺三角形においての余弦定理教えてください!!

    角B=角C=30度の二等辺三角形ABCにおいて  BC=2ABcos30° と問題の解答はなっています。 で自分なりに余弦定理を使ってこの式を導こうとしました。 すると  BC=2AB√cos(180°-2x30°)   =2AB√cos(120°) となりました。 どうやって  √cos(120°)=cos30° になってるんですか?? そもそも僕の式の導き方まちがってるんでしょうか?? わかるかた教えてください!!