• ベストアンサー
  • 暇なときにでも

相似と合同

ふたつ質問があります。どちらもあと一つ条件が見つけられません。よければ探す過程を教えてください。 (1)△abcの頂点aから辺bcにひいた垂線をadとする。adを直径とする円oと辺ab・acとの交点をそれぞれe・fとし、adとefの交点をgとするする時。→△afeと△abcの相似条件で分かったのは∠a(共通)です (2)円oに内接する二等辺三角形abc(ab=ac)があり、直線mnは点cで円oの接線である。また点bを通るmnに平行な直線が、acと円oに交わる点をそれぞれd・eとしaとe、cとeを結ぶ。→△abdと△aceの合同条件で、分かったのは、ab=acと∠abe=ace(弧aeの円周角)です

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数110
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

接線と円周角の関係が分かれば両方共に解けます。 (1)接線と円周角の関係と直径の上に作る角度は90°を用いれば、解けます。 ∠AFE=∠ABCとなります。 (2)二等辺三角形abcとmnに平行な直線と接線と円周角の関係を用いれば回答出来ます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 相似の証明教えてください

    写真のようにAB=ACの二等辺三角形がある。辺BC上に点Dをとり∠ABC=∠ADEとなるように辺AC上に点Eをとる。次の問いに答えよ (1) △ABD∽△DCEを証明せよ (2) AB=AC=12cm、BC=10cmとする。点Dが辺BCを2:3の比にわける点であるときAEの長さを求めよ (1)の相似条件が何かわからないです。 (2)はよくわからないので式も一緒に教えてください

  • 相似の証明教えて

    写真のようにAB=ACの二等辺三角形がある。辺BC上に点Dをとり∠ABC=∠ADEとなるように辺AC上に点Eをとる。次の問いに答えよ (1) △ABD∽△DCEを証明せよ (2) AB=AC=12cm、BC=10cmとする。点Dが辺BCを2:3の比にわける点であるときAEの長さを求めよ (1)の相似条件が何かわからないので証明すべて教えてください。 (2)はよくわからないので式も一緒に教えてください

  • 中3数学相似の問題

    △ ABCの内部に点Dをとり,点Dを中心として点Aを通る図を描いたものがある。 円が, 辺AB,ACと交わる点を、それぞれE,Fとし, 直線ADが, 点A 以外に円 と交 わる点, 辺BCと交わる点を, それぞ点G,Hとする。AB = 1 5 , B C = 1 4 , AC= 1 3で 且つ∠AHB=90°である。 AB:AF=AC:AE=m:nが成り立つとき、円に点Fで接する接線が点Hを通った。 このときのm:nを,最も簡単な整数の比で答えなさい。 答えは195:119なのですが、なぜなのか分かりません。 どなたかわかりやすい解説をしてもらえませんか? よろしくお願いします。

  • これを解説していただけないでしょうか?

    ⊿ABCにおいて、AB=6、BC=5、CA=7である ⊿ABCの外接円をOとする。円Oの周上にCと異なる点Dを、⊿ABC、⊿ABDの面積が等しくなるようにとると、DはCを通りABに平行な直線と円Oの周と交点であり、DはBを含まない弧AC上にある。 とあったんですがなぜDがこのような点になるかわかりません (1)点Cを通りABに平行な直線上に点Pをとるとすると、AP+BPは常に等しいのでしょうか?またそうなら理由を教えてください (2)点Cを通りABに平行な直線上に点Pをとるとすると、APXBPは常に等しいのでしょうか?これももしそうなら理由をお願いします (3)⊿ABC、⊿ABDの面積が等しくなるようにとった点DはなぜCを通りABに平行な直線と円Oの周と交点となるのですか?

  • 数学 三角形に外接する円の書き方について

    平面図形の問題の三角形に外接する円のイメージ(書く)が全くできません>< 例えば今年のセンター試験の問題(第6問)を例にあげますと、 △ABCにおいて AB=AC=5、BC=√5とする。 辺AC上に点DをAD=3となるようにとり、辺BCのBの側の延長と△ABDの外接円との交点でBと異なるものをEとする。 ここまでで、△ABCは二等辺三角形であることがわかり、多分まず△ABCを書きますよね? ですがつぎに△ABDの外接円を書く際、A,B,Dを通ることはわかっているのですがどのくらいの大きさの円を書いたらいいのかが全然わからず、そのためEも解説(画像)のような図にまるでなりません(泣) もちろんコンパスも定規も使えませんし、みなさんはどのように解いているのでしょうか? 線の間隔などしっかりしたものを書いてから解こうとしているわたしが間違ってるんでしょうか・・・? 問題に沿った図形を書くコツなど教えていただけると幸いです

  • 中学 数学 図形の問題

    アメリカの中学校の宿題です。 三角形ABCにおいて、BCの中点をMとすると、   ∠BAM=2∠MAC になります。 点Bを通り、ABと垂直な直線と直線AMの交点をDとすると、   AD=2AC となることを示しなさい(画像参照)。 私は・・・ ∠BAM=αとおくと、   ∠MAC=2α 三角形ABDは直角三角形だから、三角形ABDの外接円の中心をO、半径をrとすると、点Oは辺ADの中点となり、   OA=OB=OD=r   ∠BOD=2α (円周角と中心角の関係より) ここから、   三角形BOD≡三角形OAC を証明したかったのですが出来ませんでした。 何か良い方法があったら、教えてください。 よろしくお願いします。

  • 三角形の相似

    図のように.∠ACB=90°の直角三角形ABCがある. 辺AB上に点D.辺BC上に点Eがあって.AD=DE.DE⊥BCである.  また.点Cから辺ABに垂直CFを引き.線分AEとCFの交点をGとする. (1)△AFGと△ACEが相似であることを証明してください (2)AB=9cm.AD=4cmのとき.CGの長さを求めてください 解けなく困っています

  • 三角関数について

    △ABCにおいて、AB=4,AC=3,∠BAC=60°とする。また、三角形ABCの外接円をKとする。このとき、 BC=√13であり、△ABCの面積をS,外接円Kの半径をRとすると、 S=3√3, R=√39/3である。 (1)点Bにおける円Kの接線と点Cにおける円Kの接線を交点をDとし、直線ADと辺BCの交点をEとする。また、接線BD上に点Bに対して点Dと反対側に点Fをとる。 (図参照) (i)円Kの中心をOとすると、∠BOC=120°だから∠BDC=60°となり、BD=CD=√13である。 (ii)∠ABF=∠BCAだから, sin∠ABD=6/√39となる。 したがって△ABDの面積とT1とすると、 T1=4√3 となる。 同様にして,△ACDの面積をT2とすると, T2=9√3/4となる。 以上より, BE:EC=16:9を得る。

  • 高校 数学 円の性質 三角形と比 の問題

    高校 数学 円の性質 三角形と比 の問題 ニ十分ほど考えていますが、以下の二題が全く分かりません。入試とか模試の問題だと思います。わかる方御解答の方よろしくお願いします。 □1 図のようなBA=BCの二等辺三角形ABCと点Cを通り点Bで直線ABに接する円Oがある。また、円Oと辺ACとの交点のうちCでない方の点をDとするとき、AD=4,CD=5である。 (1)辺ABの長さを求めよ。 (2)線分BDの長さを求めよ。また、直線BCと△ADBの外接円O'との交点のうち、Bでない方の点をEとするとき、線分BEの長さを求めよ。 (3)(2)のとき、線分AEの長さを求めよ。また、線分ABと線分DEの交点をFとするとき、△BEFの面積を求めよ。 □2 AB=8、AC=6、角A=90°である直角三角形ABCがある。角ACBの二等分線と、辺ABの交点をP,直線CPと△ABCの外接円の交点のうち点Cでない方の点をQとする。 (1)線分AFの長さを求めよ。 (2)線分CPの長さを求めよ。また、線分PQの長さを求めよ。 (3)△ABCの内心をIとするとき、線分PIの長さを求めよ。また辺BCの中点をM,△AQIの重心をGとするとき、線分GMの長さを求めよ。 一気に質問してすみません。数学はかなり厳しい状況なので、よろしくお願いします。

  • 図形と計量について

    前回投稿させていただいたのですが、タイトルを間違えてました。 △ABCにおいて、AB=4,AC=3,∠BAC=60°とする。また、三角形ABCの外接円をKとする。このとき、 BC=√13であり、△ABCの面積をS,外接円Kの半径をRとすると、 S=3√3, R=√39/3である。 (1)点Bにおける円Kの接線と点Cにおける円Kの接線を交点をDとし、直線ADと辺BCの交点をEとする。また、接線BD上に点Bに対して点Dと反対側に点Fをとる。 (図参照) (i)円Kの中心をOとすると、∠BOC=120°だから∠BDC=60°となり、BD=CD=√13である。 (ii)∠ABF=∠BCAだから, sin∠ABD=6/√39となる。 したがって△ABDの面積とT1とすると、 T1=4√3 となる。 同様にして,△ACDの面積をT2とすると, T2=9√3/4となる。 以上より, BE:EC=16:9を得る。

専門家に質問してみよう