• ベストアンサー
  • 困ってます

数学IIIの問題

2次曲線に関する問題です 解説もお願いします 1. 次の双曲線の焦点の座標と漸近線の方程式、とその概形を教えてください (1) (x^2/4) - (y^2/9) =1   (2) (x^2/4) - (y^2/9) = -1 2. 円 x^2 + y^2 =9 を媒介変数θを用いて表したもの 3. 楕円 (x^2/9) + (y^2/16) =1 を媒介変数θを用いて表したもの 4. 次の極座標で表される点の直交座標 (1) (2, Π/3)   (2) (1, -5Π/4) 5. 直交座標が次のような点の極座標 r>0 , 0≦θ<2Π (1) (√3, 1)    (2) (-2, 2)

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • bran111
  • ベストアンサー率49% (512/1037)

1. 次の双曲線の焦点の座標と漸近線の方程式、とその概形を教えてください (1) (x^2/4) - (y^2/9) =1   漸近線の方程式 : (x^2/4) - (y^2/9)=0 ⇒ y=±3x/2 焦点の座標 (±√13,0)  (2) (x^2/4) - (y^2/9) = -1 漸近線の方程式 : (x^2/4) - (y^2/9)=0 ⇒ y=±3x/2 焦点の座標 (0,±√13) 2. 円 x^2 + y^2 =9 を媒介変数θを用いて表したもの x=3cosθ y=3sinθ 3. 楕円 (x^2/9) + (y^2/16) =1 を媒介変数θを用いて表したもの x=3cosθ y=4sinθ 4. 次の極座標で表される点の直交座標 (1) (2, Π/3)    x=2cos(Π/3)=1 y=2sin(Π/3)=√3 (1,√3) (2) (1, -5Π/4) x=cos(-5Π/4)=-1/√2 y=sin(-5Π/4)=-1/√2 (-√2/2, -√2/2) 5. 直交座標が次のような点の極座標 r>0 , 0≦θ<2Π (1) (√3, 1)    r=2 θ=arctan(1/√3)=Π/6 (2,Π/6)  (2) (-2, 2) r=2√2 θ=arctan(2/(-2))=3Π/4 (2√2, 3Π/4)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 媒介変数表示

    媒介変数表示tで表された曲線x=3(t+1/t)+1 y=t-1/tは双曲線である。 ①この双曲線の中心の座標、頂点の座標、及び漸近線の方程式を求めよ。 ②この曲線の概形をかけ。 できるだけ分かりやすい説明をしていただけたら幸いです。

  • 数学IIIの問題

    平面上の曲線に関する問題です。助けてください、解説もお願いします 次の放物線の方程式 (1) 焦点(1,0) 準線 x=-1 (2)焦点(0,-2) 準線 y=2 次の放物線の焦点の座標と準線の方程式 (1)y^2=5x (2)y+4x^2=0 次の楕円の焦点の座標 (1) x^2/25 + y^2/9 =1 (2)4x^2 + 3y^2 =12 楕円9x^2 +16y^2 =144をx軸方向に2, y軸方向に -3,だけ平行移動して得られる図形の方程式

  • 双曲線の問題

    教員採用試験に向けて勉強中の大学三回生です。 お恥ずかしいことに数学教師を目指していながら数学の問題がわからないので質問させてください。 双曲線の問題です。 焦点の座標が(-1,0),(1,0)であり、漸近線がy=-√3x,y=√3xである双曲線がある。 (1)双曲線の方程式を求めよ。 解答.12x^2-4y^2=3 (2)この双曲線を原点のまわりにπ/3だけ回転してできる双曲線の方程式を求めよ。 解答.8√3xy+8y^2=3 (1)はできました。 (2)がわかりません。双曲線を媒介変数表示して回転行列でやったらうまくいくかと思い試しましたがうまくいきません。 大まかな手順で結構ですのでよろしく御願い致します。

  • 数学Cの問題です。教えてください

    次の二次曲線の方程式を求めなさい。 (1)焦点が(2.4)、(2.-2)、短軸の長さ8の楕円 (2)焦点が(1.0)、(-5、0)で点(3.4)を通る双曲線 (3)頂点(-1,2)、準線x=2の放物線 どうやって求めればいいのか分かりません。 ぜひ詳しく教えてください!!

  • 数iiiの受験問題を教えてください!

    曲線Cが媒介変数tを用いて x=cos2tsint y=cos2tcost と表されるとき次の問に答えよ。 (1)t=π/6に対応するC上の点Pの座標 (2)点Pにおける曲線Cの接線の方程式 (1)は出来るのですが (2)が途中で止まってしまいます どなたか回答を宜しくお願いします。 途中式もあると助かります。

  • 数学Cの2次曲線の問題がわかりません。

    数学Cの2次曲線の問題がわかりません。 極方程式r=3/(2+sinθ)が表す曲線をCとする。 (1)曲線Cを直交座標の方程式で表し、その概形をかけ。 (2)x軸の正の部分と曲線Cが交わる点をPとする。点Pにおける曲線Cの接線の方程式を求めよ。 (3)曲線Cの第1象限の部分とx軸とよびy軸で囲まれた図形の面積を求めよ。 (1)からわかりません。 お願いします!

  • 【2次曲線】

    【2次曲線】 (1)放物線Y=X^2の焦点と、この放物線上の点とを結ぶ線分の中点の軌跡の方程式を求めよ。 (2)点(2.0)を一つの焦点とし、2直線Y-X-1=0とY+X+1=0を漸近線とする双曲線の方程式を求めよ。 よろしくお願いします m(._.)m

  • 双曲線です。基本問題のようですが解けません・・。

    楕円(x^2/8)+(y^2/4)=1上の点(2,a)を通り この楕円の焦点を焦点とする双曲線の方程式が わかりません。 答えはx^2-y^2=2 です。 お願いします。

  • 数学の問題です!

    媒介変数tにより表示された曲線C:x=(cost)^3、y=(sint)^3、(0≦t≦π/2)上に点P((cosθ)^3、(sinθ)^3)をとる。0<θ<π/2のとき、PにおけるCの接線をlとし、θ=0、π/2のときはそれぞれx軸、y軸をlと定める。このとき、次の問いに答えよ。 (1)0<θ<π/2のとき、lの方程式を求めよ。 (2)0≦θ≦π/2のとき、Pにおいてlに接する半径2の円の中心のうち、第1象限にある点をQとする。Qの座標を求めよ。 (3)PがC上を動くとき、Qの描く曲線の長さを求めよ。 よろしくお願いします><

  • 数C 2次曲線(基礎)の質問です。

    現在宅浪中の大学受験を目指しているものです。金銭面の事情で塾や予備校へ行けず、質問できる人がおらず困っています。お力添え宜しくお願い致します。 数C 2字曲線の問題です。 (1) 長軸がx軸上、短軸がy軸上にあり、2点(3, 3√2)、(2√3, 4)を通る楕円の方程式を求めよ。 (2)中心が原点で、焦点がx軸上にあり、2点(5, -4)、(5√2, 6)を通る双曲線の方程式を求めよ。 (3)2直線 y=(1/2)x, y=(-1/2)x を漸近線にもち、2点(-1, 0)、(1, 0)を焦点とする双曲線の方程式を求めよ。 の3題です。 3題全てでなくても全然いいので、もし可能であれば答えだけでなく、解き方も載せてくださると幸いです。 お手数をおかけしてすみません。宜しくお願い致します。