• 締切済み

max関数を含む関数の最適化

最適化の初学者です。微分不可能関数の最適化に困っています。 例えば、次(添付画像)の関数fを最小化する(x_1,x_2,...,x_n)はどう求めたらよいのでしょうか。 f(x_1,x_2,…,x_n)=Σ_{1≦i≦n}{ (max_{1≦j≦n}{x_{j}*r_{i,j}}-x_{i})^2 } ただし、任意のi, jに関してr_{i,j}は与えられているものとします。

みんなの回答

回答No.2

各変数はどこに属しているのでしょうか.たとえば整数だけとか,正の実数だけとか,すべての実数を考えているとか. 解析的に解ける corner case は r_{i, j} = 0 の場合ですが,ふつうに偏微分して連立方程式を解けば (x_1, ..., x_n) = (-y_1/2, ..., -y_n/2) のときに最小値 f(x_1, ..., x_n) = (Σ(y_i)^2)/2 をとることがわかります.けれども変数の範囲次第ではもっと難しくなりますし. 「|r_{i, j}| が微小なときには大体上のような解になるはず」くらいしかぱっと見ではわかりません.解けたときの検算くらいにしか使えませんが,参考までに. ## 係数の対称性を仮定したりすると,もうすこし非自明な場合でも明示的に解けたりするかも.

全文を見る
すると、全ての回答が全文表示されます。
回答No.1

何か条件を省略していませんか. 文字通りに読むと(x_1, ..., x_n) = (0, ..., 0) とすれば f(x_1, ..., x_n) = 0 で間違いなく最小値を達しますが.

noname#239498
質問者

補足

失礼いたしました。右辺に次式を足したものをfとした場合はどうでしょうか。 Σ_{1≦i≦n}((x_{i}+y_{i})^{2}) ただし、任意のiに関してy_{i}は与えられているものとします。 そもそも解析的に解ける部類の問題なのかどうかさえわからず困り果てています。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 定義から導関数を求める

    定義1 I=(a,b) a<b f;I→R(実数),x0∈I に対してfはx0で微分可能 ⇔ ∃α∈R(実数):f(x)=f(x0)+α(x-x0)+o(x-x0) (x→x0) 定義2 fはI上で微分可能 ⇔ f'はIの任意の点で微分可能。このときf';I∈x0→f'(x)∈R(実数)なる函数が定まる。これを導関数と言う。 微分の定義に基づいて、次の導関数を求めよ。 f(x)=exp(ax) (a∈R\{0}) o(g(x))=f(x)⇔lim[x→x0]f(x)/g(x)を用いるのでしょうか?どんな風に解答すればいいのか分かりません。よろしくお願いします。

  • 合成関数の導関数を求める問題です。

    解き方が分からない問題が3つあるので教えてください>< 合成関数の導関数を求める問題です。 ※ f(x)は微分可能とする。 (1){ f(sin x) }^n (2) f(sin^n x) (3) log(f(5x-1)) 問題の画像も添付しておきます。

  • 凸関数について教えてください。

    関数 f(x)=Σ(i=1~nまで)x_i*logx_i - Σ(i=1~nまで)x_i*log(Σ(j=1~nまで)x_j) x=(x_1、x_2、…x_n)^T 、 Σ(i=1~nまで)x_i=α 、  x_i>0(i=1,2…,n) 、α>0 です。 これを (1)上に凸であることを示す方法 (2)狭義凸であるかどうかを調べる方法 を教えてください。 式変形で関数が Σ(i=1~nまで)x_i*log(x_i/α) となるところまでは導けました。 ここから微分などをして、ヘッセをを求めて正定値や半正定値を判断していくと思うのですが、やり方がわかりません。 教えてください。よろしくお願いします。

  • ある関数列の例

    整式でない,関数f(x)に対し, n階微分f^(n)(x)のノルムのn→∞の極限が0に収束する例を 作ってください. ここで,ノルムの意味はL1でもL2でもL∞でもなんでもいいです.とにかくなんとなく任意のxでf(x)が小さくなってるな,というイメージで n次の整式はn+1階微分すると自明に0になってしまうので除きます.

  • 最小解について教えてください。

    f:R^n→Rを微分可能関数としx^*はその点x^*を通る全ての直線に沿ってfの局所的最小点とし g(α)=f(x^*+αd) は任意のd∈R^nに対してα=0で最小化される。 このとき (1)∇f(x^*)=0の示し方を教えてください (2)例を示すことによるx^*がfの局所最小解である必要がないことを示す方法を教えてください。

  • 関数f(x)がC∞-級関数であることの証明

    (1)f(x)が連続関数で、x≠0で微分可能かつ lim[x→+0]f'(x)=lim[x→-0]f'(x)=A (Aは実数) ならば、f(x)はx=0でも微分可能でf'(0)=Aとなることを示せ。 (2) f(x)=0 (x≦0のとき) f(x)=e^(-1/x) (x>0のとき) とするとき、f(x)はC∞-級関数であることを示せ。 *************** という問題で、(1)についてはロピタルの定理から簡単に示せるので、分からない点はありません。 (2)なんですが、x>0のとき任意のn=1,2,3,・・・に対し、{f(x)}^(n)は Σ[k=0→2n]{{a【k】}*e^(-1/x)}/x^kの形に表せます。 ∀rについてCr-級をrに関する帰納法で示したいです。 r=1のときf'(x)={e^(-1/x)}/x^2 だから1回微分可能。また、lim[x→0]f'(x)=0=f'(0)よりf'(x)は連続。 よってr=1のときにCr-級であることが証明されました。 この後、どうやっていいかわからないので教えてください。

  • 急減少関数に多項式をかけても急減少関数?

    f∈S(R)であることを fが無限回微分可能なR上の関数でかつ 任意の非負整数m、nに対して | (1+|x|)^m * f^(n) (x) |≦c_{m,n} x∈R を満たす正数c_{m,n}が存在する と定義すると、 f∈S(R)かつp(x)が多項式ならばp(x)f(x)∈S(R)であることを示せ っていう問題で、 ヒントとしてLeibnizの公式を使うとあるのですが どのようにすればよいのかわかりません。 よろしくお願いします。

  • デルタ関数

    http://fujimac.t.u-tokyo.ac.jp/fujiwara/Mathematics-2/Sec5.pdf のpdfファイルのページ数で5-6ページ、pdfの下部に振られている番号で77-78ページ、に書かれていることについて質問です。 δ_n(x)=(√(n/π))e^(-nx^2) とし、δ(x)=lim[n→∞]δ_n(x) とする。 1つめ。 関数f(x) を無限回連続微分可能で、かつ|x|→∞にした時、任意のNで定義される|x|^(-N) より早く0 になる関数(急減少関数) であるとする。例えば|x|の充分大きいところでexp(-x^2) の様に振る舞うと考えればよい。この時 ∫[-∞→∞]f(x)δ (x)dx=lim[n→∞]∫[-∞→∞]f(x)δ_n (x)dx=f(0) であることが示される。 と、記載されているのですが、何故このように言えるのでしょうか? 2つめ。 充分大きいn について、 δ_n(x) はx = 0 を中心とした非常にせまい範囲内でのみ0 でない値をとる。したがってf(x) はx≒0付近での値だけが寄与して ∫[-∞→∞]f(x)δ_n (x)dx≒f(0)∫[-∞→∞]δ_n (x)dx=f(0) となるからである。 と記載されていますが、何故 ∫[-∞→∞]f(x)δ_n (x)dx≒f(0)∫[-∞→∞]δ_n (x)dx のような、式変形が可能なのでしょうか? 3つめ。 もう少し厳密な形で書くなら次のように示せばよい:  |∫[-∞→∞]f(x)(√(n/π))e^(-nx^2)dx-f(0)| =|∫[-∞→∞]{f(x)-f(0)}(√(n/π))e^(-nx^2)dx| ≦Max|f^(1)(x)|∫[-∞→∞]|x|(√(n/π))e^(-nx^2)dx と、記載されていますが、何故、 |∫[-∞→∞]{f(x)-f(0)}(√(n/π))e^(-nx^2)dx|≦Max|f^(1)(x)|∫[-∞→∞]|x|(√(n/π))e^(-nx^2)dx と、言えるのでしょうか? 宜しくお願いします。

  • n次導関数

    f(x)=1/(1+x)のn次導関数をもとめたいんですが f^(n)(x)=(-1)(-1-1)・・・(-1-n+1)(1+x)^(-1-n) になるのがわかりません。 f(x)を1回微分したら(-1)*1^(-2)で n回微分したら^(-2-n)だと思うのですが。 あと最後の項にxが残るのはなぜですか?

  • 関数

    高校数学(微分) 一応微分の範囲に載ってはいますが、質問の中心は関数の基本についてです。 (原文そのままです) 関数f(x)は微分可能で、f´(0)=aとする。任意の実数x、yにたいして、等式f(x+y)=f(x)+f(y)が成り立つ。f´(x)を求めよ。 (私の考えと疑問点) 関数f(x)と書いてあるだけで、関数y=f(x)とは書かれていないので、この問題では、x(独立変数)、y(従属変数)という関係ではなく、(1)x(独立変数)、y(独立変数)という関係である。 (2)x(任意の定数、数学ではabのようにあらわすことが多い)y(任意の定数) (1)と(2)の捉え方どちらが正しいのでしょうか? どちらも同じようなものな気もするのですが。 また、最初を関数f(y)最後をf´(y)としてやっても結果は同じですよね?