• 締切済み
  • すぐに回答を!

偏微分の順序交換が無条件にできない関数

f(x,y)= xy(x^2-y^2)/(x^2+y^2) ((x,y)≠(0,0)の時) 0 ((x,y)=(0,0)の時) について、fxy(x,y)=fyx(x,y)が無条件には成立しないことを示せ。 という問題なのですが、答案のイメージが曖昧になっていて困っています。 具体的にどういう答案を書けばよいのか教えてください! 因みに fxy(x,y)=fyx(x,y)の成立条件が fxy(x,y)とfyx(x,y)が共に存在しかつ連続 であることは知っています。 またfxy(x,y)とfyx(x,y)を直接求めたところ、ともに(x,y)=(0,0)で不連続であることは示せました。 無いとは思いますが、第二次偏導関数を求めずに証明できる少しでも簡単な方法があればそれも併せて教えていただけるとあありがたいです。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数531
  • ありがとう数0

みんなの回答

  • 回答No.1
noname#199771
noname#199771

まずy≠0のときfx(0,y)を計算します。 次にx≠0のときfy(x,0)を計算します。 ここからfxy(0,0)とfyx(0,0)が存在するならそれぞれ 計算できますから計算を実行します。 でてきた結果を比較してみてください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • Fxy=Fyx の証明はこれではだめですか?(偏微分の順序交換の証明)

    Fは(x,y)で連続かつx,yについて偏微分可能し、FxyとFyxも(x,y)において存在するとき、Fxy=Fyxとなる。なお、FxyとはFをxについて偏微分して次にyについて偏微分したものとする。 これを示すと Fxy=lim(h→0)1/h{Fy(x+h,y)-Fy(x,y)} Fy=lim(h→0)1/h{F(x,y+h)-F(x,y)}より、 Fxy=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} 一方、Fyx=lim(h→0)1/h{Fx(x,y+h)-Fx(x,y)}、 Fx=lim(h→0)1/h{F(x+h,y)-F(x,y)}より Fyx=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x,y+h)-F(x+h,y)+F(x,y))} =lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} したがって Fxy=Fyxが成立する。 こうやって示したのですが、ダメですか?

  • 偏微分の順序変更について質問

    (x,y)を独立変数として、ある関数Fをそれぞれの変数で1回づつの偏微分(それぞれ1回なので都合2回)することを考えます。Fxyと表示します。これは大抵の場合、微分の順番の変更が許されて、Fyxにもなると思います。(それが許されない場合もあるとは思いますが、あくまでもだいたいの場合です。)Fの2回の微分可能性は当然の条件として成立していると仮定してのことです。 別の独立変数(ξ,η)を考えます。この場合でも上と同様にFξη=Fηξが成り立つとします。 そこで質問ですが、Fxξ=Fξxという偏微分の順番の変更はおなじような理屈で成立するものでしょうか。私はできないんじゃないかなと思っているのですが。このような問題って微分積分学のテキストには説明されているでしょうか。"説明されない=できない"ということでしょうか。 よろしくお願いします。

  • 2次偏導関数の連続について

    予習していたとき 関数F(x,y)の2次偏導関数Fxy(x,y), Fyx(x,y)が連続ならば, Fxy(x,y)=Fyx(x,y)であることを示してください。 という問題で詰まりました ご教授お願いします

  • 以前も質問しましたが解決できませんでした。微分の問題です。

    f(x,y)=(xy)(x^2-y^2)/x^2+y^2 (x,y)≠(0,0) =0 (x,y)=(0,0)について 1.fが平面全体で連続であることを証明してください。 2.fx(x,y),fy(x,y) (x,y)≠(0,0)とfx(0,0),fy(0,0)を求めてください 3.fxy(0,0)とfyx(0,0)を求めてください 4.fが全微分可能である理由と、fがC2級である理由を教えてください

  • 数学

    わかりません解き方教えてください z=f(x,y)は2回偏微分可能でfxy,fyxは共に連続とする。 1. (3(∂/∂x+2(∂/∂y)^2 f(x,y) をfxx, fxy, fyyを用いて表せ。 2. f(x,y)=e^(xy)のとき, (3(∂/∂x+2(∂/∂y)^2 f(0,0)を求めよ。

  • 高次(階)偏導関数の問題について

    高次(階)偏導関数の問題をどうにか解いてみたのですが、 あっているか自信がありません。特に(6)の問題。 わかる方、ご指導よろしくお願いします。 【問題】 次の関数f(x,y)の2次までの変動関数を求めよ。 (1) x^2+3xy+y^2+2 fx(x,y)=2x+3y fy(x,y)=3x+2y fxx(x,y)=2 fxy(x,y)=3 fyx(x,y)=3 fyy(x,y)=2 (2) log(x^2+y^2+1) d/dt log(t)=1/t δ/δx x^2+y^2+1=2x δ/δy x^2+y^2+1=2y 合成関数の微分の公式を適用し、 fx(x,y)=1/(x^2+y^2+1)*2x=2x/(x^2+y^2+1) fy(x,y)=1/(x^2+y^2+1)*2y=2y/(x^2+y^2+1) 商の微分の公式を適用し fxx(x,y)={(2*(x^2+y^2+1)-2x(2x)}/(x^2+y^2+1)^2=-2(x^2-y^2-1)/(x^2+y^2+1)^2 同様に計算し、 fxy(x,y)=-4xy/(x^2+y^2+1)^2 fyx(x,y)=-4xy/(x^2+y^2+1)^2 fyy(x,y)=2(x^2-y^2+1)/(x^2+y^2+1)^2 (3) e^(xy) d/dt log(t)=e^t δ/δx xy=y δ/δy xy=x 合成関数の微分の公式を適用し、 fx(x,y)=e^(xy)*y=y e^(xy) fy(x,y)=e^(xy)*x=x e^(xy) fxx(x,y)=y e^(xy)*y=y^2 e^(xy) fxy(x,y)=y e^(xy)*x=xy e^(xy) fyx(x,y)=x e^(xy)*y=xy e^(xy) fyy(x,y)=x e^(xy)*x=y^2 e^(xy) (4) e^(2x+3y) d/dt log(t)=e^t δ/δx 2x+3y=2 δ/δy 2x+3y=3 合成関数の微分の公式を適用し、 fx(x,y)=e^(2x+3y)*2=2 e^(xy) fy(x,y)=e^(2x+3y)*3=3 e^(xy) fxx(x,y)=2 e^(2x+3y)*2=4 e^(xy) fxy(x,y)=2 e^(2x+3y)*3=6 e^(xy) fyx(x,y)=3 e^(2x+3y)*2=6 e^(xy) fyy(x,y)=3 e^(2x+3y)*3=9 e^(xy) (5) x^2+3xy+4y^2+1 fx(x,y)=2x+3y fy(x,y)=3x+8y fxx(x,y)=2 fxy(x,y)=3 fyx(x,y)=3 fyy(x,y)=8 (6) xy(x^2-y^2)/(x^2+y^2) ((x,y)≠(0,0)) { 0 ((x,y)=(0,0)) fx(0,0)={f(x,0)-f(0,0)}/x=0/x=0 同様に fy(0,0)={f(0,y)-f(0,0)}/y=0/y=0 (x,y)≠0のとき、商の微分の公式を適用して fx(x,y)=y(x^4+4x^2y^2-y^4)/(x^2+y^2)^2 fy(x,y)=x(x^4-4x^2y^2-y^4)/(x^2+y^2)^2 再度、商の微分の公式を適用して fxx(x,y)=-4xy^3(x^2-3y^2)/(x^2+y^2)^3 fxy(x,y)=(x^6+9x^4y^2-9x^2y^4-y^6)/(x^2+y^2)^3 fyx(x,y)=(x^6+9x^4y^2-9x^2y^4-y^6)/(x^2+y^2)^3 fyy(x,y)=-4xy(2x^4+x^2+y^4)/(x^2+y^2)^3 疑問点1 fxx(0,0),fxy(0,0),fyx(0,0),fyy(0,0)についても、 求めなくてもいいのでしょうか? 疑問点2 商の微分を2回行うことにより、計算結果を導いたのですが、 もっと簡単な手順で導く公式等はないのでしょうか? たびたびの質問で申し訳ありませんが、 ご指導のほどよろしくお願いします。

  • 微分の問題です

    f(x,y)=(xy)(x^2-y^2)/x^2+y^2 (x,y)≠(0,0) =0 (x,y)=(0,0)について 1.fが平面全体で連続であることを証明してください。 2.fx(x,y),fy(x,y) (x,y)≠(0,0)とfx(0,0),fy(0,0)を求めてください 3.fxy(0,0)とfyx(0,0)を求めてください 4.fが全微分可能である理由と、fがC2級である理由を教えてください 全く分からないので解答解説をおねがいします!

  • 二階偏微分と二次元空間の関係

    定理 R^nの開集合Uで定義され, R^mに値をとる函数fに対し, 点c∈Uのある近傍Wでf_xi,xjとf_xj,xi(二階偏導関数)がともに存在して, cにおいて連続ならばf_xi,xj(c)=f_xj,xi(c)が成り立つ. 証明の6~8行目 「f_xi,xj(c)は定義によれば、、、 、、、表すことができる」 これが成り立つ正確な理由を教えてください。

  • 偏微分関数の問題が分かりません!

    大学で偏微分の問題が出されたのですが分かりません。教えてください!! [問]z=f(x,y)はC^2級で、x=rcosθ,y=rsinθとする。次の問いに答えよ。 ・x(∂z/∂x) + y(∂z/∂y)=0の時、zはθに依存することを示せ。 ・(1/x)*(∂z/∂x) = (1/y)*(∂z/∂y)の時、zはrにのみ依存することを示せ。 ・(∂^2z/∂x^2) + (∂^2z/∂y^2) = (1/r)*(∂z/∂r) + (1/r^2)(∂^2z/∂θ^2) となることを示せ。

  • 複雑な偏微分

    z=f(x, y)=√[5+4{3(logx)+8(logy)}] のとき、 ∂z/∂x(zをxで偏微分)は、どういう風に計算するのでしょうか?