• ベストアンサー
  • すぐに回答を!

偏微分について。

【次の関数f(x,y)についてfxy(0,0)とfyx(0,0)を求め、これが等しくなくことを示せ。 f(x,y) = xy(x^2-2y^2)/(x^2+y^2)…(x,y≠0,0) f(x,y) = 0…(x,y = 0,0) 】 という問題があるのですが、なぜ解き方として 【偏微分係数を求める定義の式(limを使う式)から求めなければいけない】 とあるのですが、なぜ公式(fx = nx^(n-1)のような)を使ってはいけないのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数241
  • ありがとう数5

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.4
  • info22
  • ベストアンサー率55% (2225/4034)

#3です。 参考URLを貼り付けるのを忘れました。

参考URL:
http://www.osaka-kyoiku.ac.jp/~tomodak/grapes/volume.html#download

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 とても分かりやすかったです。

関連するQ&A

  • Fxy=Fyx の証明はこれではだめですか?(偏微分の順序交換の証明)

    Fは(x,y)で連続かつx,yについて偏微分可能し、FxyとFyxも(x,y)において存在するとき、Fxy=Fyxとなる。なお、FxyとはFをxについて偏微分して次にyについて偏微分したものとする。 これを示すと Fxy=lim(h→0)1/h{Fy(x+h,y)-Fy(x,y)} Fy=lim(h→0)1/h{F(x,y+h)-F(x,y)}より、 Fxy=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} 一方、Fyx=lim(h→0)1/h{Fx(x,y+h)-Fx(x,y)}、 Fx=lim(h→0)1/h{F(x+h,y)-F(x,y)}より Fyx=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x,y+h)-F(x+h,y)+F(x,y))} =lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} したがって Fxy=Fyxが成立する。 こうやって示したのですが、ダメですか?

  • 編微分係数の問題について。

    f(x,y)について、fxy(0,0)とfyx(0,0)を求め、これが等しくないことを示せ。 f(x,y) = xy(x^2-2y^2)/(x^2+y^2) (x,y) ≠ (0,0) = 0 (x,y) = (0,0) という問題があるのですが、解答によると、編微分係数の定義にしたがって(limを使う式)解いていくのですが、なぜfx(x^3だったら3x^2にするような)のように編微分の公式をそのまま使ってはまずいのでしょうか?

  • 偏微分の問題

    fxy(x,y)=∂/(∂z/∂x)=(∂^2 z)/(∂y ∂x)または、fyx(x・・・・の意味がわかりません。 xyあるいは、yxのところだけ微分でき、xだけのところ、yだけのところを定数とみなすという意味じゃないのですか。 たとえば、1)3x^3-2xy+y^2だったら、fxy=fyx=-2で自分が考えている通りになるのですが、2)sin(2x+3y)とか、3)1/(x-y)、4)e^(2x)sin3yとかはできません。 教えてください。

その他の回答 (3)

  • 回答No.3
  • info22
  • ベストアンサー率55% (2225/4034)

fxy(0,0)とfyx(0,0)は (x,y)≠(0,0)の時は fxy(x,y)=fyx(x,y) =-(2*y^6+15*x^2*y^4-12*x^4*y^2-x^6)/(y^2+x^2)^3 …(■) =g(x,y)とおく。 g(x,y)はx=y=0では0/0型になります。 この式でx→0(y≠0)としてみるとg(0,y)=fxy(0,y)=fyx(0,y)=-2 g(x,y)=fxy(x,y)=fyx(x,y)→-2 また この式でy→0(x≠0)としてみるとg(x,0)=fxy(x,0)=fyx(x,0)=1 g(x,y)=fxy(x,y)=fyx(x,y)→1 このように、fxy(x,y)=fyx(x,y)は(x,y)=(0,0)では定義されない(0/0型)けれども、 y≠0のもとでx→0とした場合のfxy(x,y)=fyx(x,y)の値-2が存在し その後、y→0としても、fxy(x,y)=fyx(x,y)の値は同じ-2となる。 y≠0のもとでx→0とした場合のfxy(x,y)=fyx(x,y)の値1が存在し その後、x→0としても、fxy(x,y)=fyx(x,y)の値は同じ1となる。 この事は(x,y)→(0,0)への近づけ方により fxy(x,y)=fyx(x,y)の値が異なるわけです。 fxy(x,y)やfyx(x,y)が(x,y)=(0,0)で未定義の場合や方向微係数が異なる場合((x,y)の(0,0)への接近のさせ方で値が異なる場合)は極限(lim) を使って取り扱わないといけませんね。 (■)のg(x,y)の(x,y)=(0,0)付近のz=g(x,y)の曲面をプロットしてしてみてください。(参考URLのフリーソフト3D-GRAPES 1.41Aで曲面がプロットできます。)なぜfxy(0,0)がなぜlimをとらないといけないかよく分かるでしょう。 (x,y)=(0,0)におけるg(x,y)の収束値は(0,0)への近づけ方により 1,-2,(-1±3√2)/2などの値をとったりします。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

fxとfyについて目をつぶって機械的に公式を当てはめて出した式と、x=0, y=0における偏微分の定義どおりの手順で計算({f(δx,y)-f(0,y)}/δxでδx→0, {f(x,δy)-f(x,0)}/δyでδy→0などなど)した場合の結果を比較されたら、わかりませんか?

共感・感謝の気持ちを伝えよう!

  • 回答No.1

なぜ「公式がつかえる」と思うのでしょうか? 公式はいつでもどこでも使えるわけではありません. 前提条件を理解しましょう.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 偏微分の極値が。。八十八カ所めぐりします。。

    関数 (x^2+y^2-1)^2 の極値を求めたいんですが。。 偏微分D=fxx^2 -fxy*fyx を計算すると、 x^2+y^2=1 となって 円!?ΣΣ 極値がしぼりこめません。。 日本語がへたでうまく伝わらなかったらごめんなさい。。 どうかおねがいします

  • 偏微分係数の問題

    次の関数の(0,0)における偏微分係数を、定義に従って求めよ f(x,y)=(x^3-y^3)/(x^2 +y^2) ((x,y)≠(0,0)のとき) 0((x,y)=(0,0)のとき) ↑少し見づらいかもしれませんがご了承下さい 以上の問題で他の問題と比較しながら解いたところ、fx(0,0)は解答通り1になったのですがfy(0,0)が-1になりませんでした ちなみに、自分はyについて偏微分してから x=rcosθ、y=rsinθ を代入して求めました 解き方が分かる方簡単にでいいので解答をお願いします(>_<)

  • 偏微分係数。

    次の二変数関数fの(0,0)での各変数x,yに関する偏微分係数を求めよ。 f(x,y)= (2y+sinx/x+y if x+y≠0 (1 if x+y=0 解)xに関して lim(h→0) 1/h{f(0+h,0)-f(0,0)}=   lim(h→0)sinh/h・1/h-1/h →+∞ よってfは(0,0)でxに関して偏微分ではない。 yに関して lim(h→0) 1/h{f(0,0+h)-f(0,0)}= lim(h→0) 2/h-1 →+∞ よってfは(0,0)でyに関して偏微分ではない。 これ合ってるでしょうか?間違っている気がするのですが…ご教授お願い致します。

  • 偏微分の「fxy」と「fyx」が同じ値になるときについて

    偏微分で fxy(x、y)とfyx(x、y)が点(a,b)を含むある開集合で 連続であるときfxy(a、b)=fyx(a、b)といえる。 という定理があるのですが、この解釈のしかたとして 例えばfxy(x、y)とfyx(x、y)が 0≦x<∞かつ0≦y<∞のような集合(半開集合?) で連続であるとき、 開集合0<x<∞かつ0<y<∞、では fxy(x、y)=fyx(x、y)といえるが、 点(0,3)、(0,0)、や(3,0)のような、 集合の境界上ではfxy(x、y)≠fyx(x、y)となる場合もある。 という解釈のしかたでいいのでしょうか?

  • 偏微分の順序交換が無条件にできない関数

    f(x,y)= xy(x^2-y^2)/(x^2+y^2) ((x,y)≠(0,0)の時) 0 ((x,y)=(0,0)の時) について、fxy(x,y)=fyx(x,y)が無条件には成立しないことを示せ。 という問題なのですが、答案のイメージが曖昧になっていて困っています。 具体的にどういう答案を書けばよいのか教えてください! 因みに fxy(x,y)=fyx(x,y)の成立条件が fxy(x,y)とfyx(x,y)が共に存在しかつ連続 であることは知っています。 またfxy(x,y)とfyx(x,y)を直接求めたところ、ともに(x,y)=(0,0)で不連続であることは示せました。 無いとは思いますが、第二次偏導関数を求めずに証明できる少しでも簡単な方法があればそれも併せて教えていただけるとあありがたいです。

  • 偏微分(?)について

    すべての実数xについて微分可能な関数f(x)において f(x+y)=f(x)+f(y)+xy…(A) f'(0)=1 (1)f(0)の値を求めよ。 (2)f(x)を求めよ。 という問題ですが、(1)はいいとして、(2)で計算していくときに普通にやるならば導関数の定義に持ち込むことになると思います。ただこのタイプの問題としてはもちろん毎回違う形で関数が与えられますから、式変形の最中にどうすればいいか止まってしまうこともありえます。 ところが、この問題の場合すべてのxにおいて微分可能が保障されているので「(A)において、xを固定し、yで微分する」というやり方(多分これが偏微分だと思うのですが...)を用いるとすぐに解けますし、迷う箇所もありません。 これは予備校で教わったのですが、もちろん教科書には書かれていません。確かに(x+y)^2=x^2+2xy+y^2に対してこれと同じ事をおこなうと、両辺等しくなり等号は成り立ちます。つまり恒等式であり続けます。しかしこの解法について根本的に理解したとは思えませんし、教科書にないようなこういう解答は許されるのでしょうか?

  • 偏微分

    数学の問題なのですが、まったくわかりません。 助けてください。 次の関数の偏微分を求めよ。 f(x,y,z)= (1) 2x + 3x^2y + yz^2 + 4 (2) (2x - x^2y)(4y^3 + yz^2) (3) (cosx + 2xz) sin3y (4) 2z^4e^xy + y(sin2x)e^3x たとえば (1) では ∂f / ∂x = 2 + 6xy + yz^2 ∂f / ∂y = 2x + 3x^2 + z^2 ∂f / ∂z = 2x + 3x^2y + 2yz となるのでしょうか?? いまいち偏微分が理解できません。 できれば教えてください!!

  • 偏微分をド忘れしてしまいました.

    偏微分をド忘れしてしまいました. 例えば,f(x,y) = x^2 + 3xy という関数を考えたとき, ∂f/∂x = 2x + 3y ですよね. ここでyがxの関数,例えば y(x) = x^4 としたら, ∂f/∂x = 2x + 3y = 2x + 3x^4 になるでしょうか, それとも最初にf(x,y) = x^2 + 3xy = x^2 + 3x^5 としてから ∂f/∂x = 2x + 15x^4 とするのでしょうか.

  • 偏微分の問題です。

    偏微分の問題です。 D = {(x,y)∈R^2 | x>0, y>0} x*[∂f/∂x] - y*[∂f/∂y] = 0 ならば、 f(x,y)は1変数の関数g(t)によって、f(x,y)=g(xy)とあらわされることを示せ。

  • 偏微分

    助けて! 次の関数の偏微分を求めよ。 f(x,y,z)= (1) 2x 3x^2y yz^2 4 (2) (2x-x^2y)(4y^3 yz^2) (3) (cosx 2xz)sin3y (4) 2z^4e^xy y(sin2x)e^3x