• ベストアンサー

偏微分について。

【次の関数f(x,y)についてfxy(0,0)とfyx(0,0)を求め、これが等しくなくことを示せ。 f(x,y) = xy(x^2-2y^2)/(x^2+y^2)…(x,y≠0,0) f(x,y) = 0…(x,y = 0,0) 】 という問題があるのですが、なぜ解き方として 【偏微分係数を求める定義の式(limを使う式)から求めなければいけない】 とあるのですが、なぜ公式(fx = nx^(n-1)のような)を使ってはいけないのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.4

#3です。 参考URLを貼り付けるのを忘れました。

参考URL:
http://www.osaka-kyoiku.ac.jp/~tomodak/grapes/volume.html#download
nabewari
質問者

お礼

回答ありがとうございます。 とても分かりやすかったです。

その他の回答 (3)

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.3

fxy(0,0)とfyx(0,0)は (x,y)≠(0,0)の時は fxy(x,y)=fyx(x,y) =-(2*y^6+15*x^2*y^4-12*x^4*y^2-x^6)/(y^2+x^2)^3 …(■) =g(x,y)とおく。 g(x,y)はx=y=0では0/0型になります。 この式でx→0(y≠0)としてみるとg(0,y)=fxy(0,y)=fyx(0,y)=-2 g(x,y)=fxy(x,y)=fyx(x,y)→-2 また この式でy→0(x≠0)としてみるとg(x,0)=fxy(x,0)=fyx(x,0)=1 g(x,y)=fxy(x,y)=fyx(x,y)→1 このように、fxy(x,y)=fyx(x,y)は(x,y)=(0,0)では定義されない(0/0型)けれども、 y≠0のもとでx→0とした場合のfxy(x,y)=fyx(x,y)の値-2が存在し その後、y→0としても、fxy(x,y)=fyx(x,y)の値は同じ-2となる。 y≠0のもとでx→0とした場合のfxy(x,y)=fyx(x,y)の値1が存在し その後、x→0としても、fxy(x,y)=fyx(x,y)の値は同じ1となる。 この事は(x,y)→(0,0)への近づけ方により fxy(x,y)=fyx(x,y)の値が異なるわけです。 fxy(x,y)やfyx(x,y)が(x,y)=(0,0)で未定義の場合や方向微係数が異なる場合((x,y)の(0,0)への接近のさせ方で値が異なる場合)は極限(lim) を使って取り扱わないといけませんね。 (■)のg(x,y)の(x,y)=(0,0)付近のz=g(x,y)の曲面をプロットしてしてみてください。(参考URLのフリーソフト3D-GRAPES 1.41Aで曲面がプロットできます。)なぜfxy(0,0)がなぜlimをとらないといけないかよく分かるでしょう。 (x,y)=(0,0)におけるg(x,y)の収束値は(0,0)への近づけ方により 1,-2,(-1±3√2)/2などの値をとったりします。

  • jamf0421
  • ベストアンサー率63% (448/702)
回答No.2

fxとfyについて目をつぶって機械的に公式を当てはめて出した式と、x=0, y=0における偏微分の定義どおりの手順で計算({f(δx,y)-f(0,y)}/δxでδx→0, {f(x,δy)-f(x,0)}/δyでδy→0などなど)した場合の結果を比較されたら、わかりませんか?

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

なぜ「公式がつかえる」と思うのでしょうか? 公式はいつでもどこでも使えるわけではありません. 前提条件を理解しましょう.

関連するQ&A

  • 編微分係数の問題について。

    f(x,y)について、fxy(0,0)とfyx(0,0)を求め、これが等しくないことを示せ。 f(x,y) = xy(x^2-2y^2)/(x^2+y^2) (x,y) ≠ (0,0) = 0 (x,y) = (0,0) という問題があるのですが、解答によると、編微分係数の定義にしたがって(limを使う式)解いていくのですが、なぜfx(x^3だったら3x^2にするような)のように編微分の公式をそのまま使ってはまずいのでしょうか?

  • Fxy=Fyx の証明はこれではだめですか?(偏微分の順序交換の証明)

    Fは(x,y)で連続かつx,yについて偏微分可能し、FxyとFyxも(x,y)において存在するとき、Fxy=Fyxとなる。なお、FxyとはFをxについて偏微分して次にyについて偏微分したものとする。 これを示すと Fxy=lim(h→0)1/h{Fy(x+h,y)-Fy(x,y)} Fy=lim(h→0)1/h{F(x,y+h)-F(x,y)}より、 Fxy=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} 一方、Fyx=lim(h→0)1/h{Fx(x,y+h)-Fx(x,y)}、 Fx=lim(h→0)1/h{F(x+h,y)-F(x,y)}より Fyx=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x,y+h)-F(x+h,y)+F(x,y))} =lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} したがって Fxy=Fyxが成立する。 こうやって示したのですが、ダメですか?

  • 微分の問題です

    f(x,y)=(xy)(x^2-y^2)/x^2+y^2 (x,y)≠(0,0) =0 (x,y)=(0,0)について 1.fが平面全体で連続であることを証明してください。 2.fx(x,y),fy(x,y) (x,y)≠(0,0)とfx(0,0),fy(0,0)を求めてください 3.fxy(0,0)とfyx(0,0)を求めてください 4.fが全微分可能である理由と、fがC2級である理由を教えてください 全く分からないので解答解説をおねがいします!

  • 数学

    わかりません解き方教えてください z=f(x,y)は2回偏微分可能でfxy,fyxは共に連続とする。 1. (3(∂/∂x+2(∂/∂y)^2 f(x,y) をfxx, fxy, fyyを用いて表せ。 2. f(x,y)=e^(xy)のとき, (3(∂/∂x+2(∂/∂y)^2 f(0,0)を求めよ。

  • 以前も質問しましたが解決できませんでした。微分の問題です。

    f(x,y)=(xy)(x^2-y^2)/x^2+y^2 (x,y)≠(0,0) =0 (x,y)=(0,0)について 1.fが平面全体で連続であることを証明してください。 2.fx(x,y),fy(x,y) (x,y)≠(0,0)とfx(0,0),fy(0,0)を求めてください 3.fxy(0,0)とfyx(0,0)を求めてください 4.fが全微分可能である理由と、fがC2級である理由を教えてください

  • 偏微分の問題

    fxy(x,y)=∂/(∂z/∂x)=(∂^2 z)/(∂y ∂x)または、fyx(x・・・・の意味がわかりません。 xyあるいは、yxのところだけ微分でき、xだけのところ、yだけのところを定数とみなすという意味じゃないのですか。 たとえば、1)3x^3-2xy+y^2だったら、fxy=fyx=-2で自分が考えている通りになるのですが、2)sin(2x+3y)とか、3)1/(x-y)、4)e^(2x)sin3yとかはできません。 教えてください。

  • 高次(階)偏導関数の問題について

    高次(階)偏導関数の問題をどうにか解いてみたのですが、 あっているか自信がありません。特に(6)の問題。 わかる方、ご指導よろしくお願いします。 【問題】 次の関数f(x,y)の2次までの変動関数を求めよ。 (1) x^2+3xy+y^2+2 fx(x,y)=2x+3y fy(x,y)=3x+2y fxx(x,y)=2 fxy(x,y)=3 fyx(x,y)=3 fyy(x,y)=2 (2) log(x^2+y^2+1) d/dt log(t)=1/t δ/δx x^2+y^2+1=2x δ/δy x^2+y^2+1=2y 合成関数の微分の公式を適用し、 fx(x,y)=1/(x^2+y^2+1)*2x=2x/(x^2+y^2+1) fy(x,y)=1/(x^2+y^2+1)*2y=2y/(x^2+y^2+1) 商の微分の公式を適用し fxx(x,y)={(2*(x^2+y^2+1)-2x(2x)}/(x^2+y^2+1)^2=-2(x^2-y^2-1)/(x^2+y^2+1)^2 同様に計算し、 fxy(x,y)=-4xy/(x^2+y^2+1)^2 fyx(x,y)=-4xy/(x^2+y^2+1)^2 fyy(x,y)=2(x^2-y^2+1)/(x^2+y^2+1)^2 (3) e^(xy) d/dt log(t)=e^t δ/δx xy=y δ/δy xy=x 合成関数の微分の公式を適用し、 fx(x,y)=e^(xy)*y=y e^(xy) fy(x,y)=e^(xy)*x=x e^(xy) fxx(x,y)=y e^(xy)*y=y^2 e^(xy) fxy(x,y)=y e^(xy)*x=xy e^(xy) fyx(x,y)=x e^(xy)*y=xy e^(xy) fyy(x,y)=x e^(xy)*x=y^2 e^(xy) (4) e^(2x+3y) d/dt log(t)=e^t δ/δx 2x+3y=2 δ/δy 2x+3y=3 合成関数の微分の公式を適用し、 fx(x,y)=e^(2x+3y)*2=2 e^(xy) fy(x,y)=e^(2x+3y)*3=3 e^(xy) fxx(x,y)=2 e^(2x+3y)*2=4 e^(xy) fxy(x,y)=2 e^(2x+3y)*3=6 e^(xy) fyx(x,y)=3 e^(2x+3y)*2=6 e^(xy) fyy(x,y)=3 e^(2x+3y)*3=9 e^(xy) (5) x^2+3xy+4y^2+1 fx(x,y)=2x+3y fy(x,y)=3x+8y fxx(x,y)=2 fxy(x,y)=3 fyx(x,y)=3 fyy(x,y)=8 (6) xy(x^2-y^2)/(x^2+y^2) ((x,y)≠(0,0)) { 0 ((x,y)=(0,0)) fx(0,0)={f(x,0)-f(0,0)}/x=0/x=0 同様に fy(0,0)={f(0,y)-f(0,0)}/y=0/y=0 (x,y)≠0のとき、商の微分の公式を適用して fx(x,y)=y(x^4+4x^2y^2-y^4)/(x^2+y^2)^2 fy(x,y)=x(x^4-4x^2y^2-y^4)/(x^2+y^2)^2 再度、商の微分の公式を適用して fxx(x,y)=-4xy^3(x^2-3y^2)/(x^2+y^2)^3 fxy(x,y)=(x^6+9x^4y^2-9x^2y^4-y^6)/(x^2+y^2)^3 fyx(x,y)=(x^6+9x^4y^2-9x^2y^4-y^6)/(x^2+y^2)^3 fyy(x,y)=-4xy(2x^4+x^2+y^4)/(x^2+y^2)^3 疑問点1 fxx(0,0),fxy(0,0),fyx(0,0),fyy(0,0)についても、 求めなくてもいいのでしょうか? 疑問点2 商の微分を2回行うことにより、計算結果を導いたのですが、 もっと簡単な手順で導く公式等はないのでしょうか? たびたびの質問で申し訳ありませんが、 ご指導のほどよろしくお願いします。

  • 偏微分の順序交換が無条件にできない関数

    f(x,y)= xy(x^2-y^2)/(x^2+y^2) ((x,y)≠(0,0)の時) 0 ((x,y)=(0,0)の時) について、fxy(x,y)=fyx(x,y)が無条件には成立しないことを示せ。 という問題なのですが、答案のイメージが曖昧になっていて困っています。 具体的にどういう答案を書けばよいのか教えてください! 因みに fxy(x,y)=fyx(x,y)の成立条件が fxy(x,y)とfyx(x,y)が共に存在しかつ連続 であることは知っています。 またfxy(x,y)とfyx(x,y)を直接求めたところ、ともに(x,y)=(0,0)で不連続であることは示せました。 無いとは思いますが、第二次偏導関数を求めずに証明できる少しでも簡単な方法があればそれも併せて教えていただけるとあありがたいです。

  • 偏微分の極値が。。八十八カ所めぐりします。。

    関数 (x^2+y^2-1)^2 の極値を求めたいんですが。。 偏微分D=fxx^2 -fxy*fyx を計算すると、 x^2+y^2=1 となって 円!?ΣΣ 極値がしぼりこめません。。 日本語がへたでうまく伝わらなかったらごめんなさい。。 どうかおねがいします

  • 微分の3次近似多項式について少し質問です><

    微分の3次近似多項式について少し質問です>< お願いします。 f(x,y)=e^xyの3次近似多項式を求める問題があったのですがやってみたところ fx=ye^xy   fy=xe^xy fxx=y^2・e^xy   fyy=x^2・e^xy fxxx=y^3・e^xy   fyyy=x^3・e^xy fxy=e^xy+xye^xy fxyx=2ye^xy+xy^2・e^xy fxyy=2xe^xy+x^2・y・e^xy となり近似式にいれるためにそれぞれに(0,0)を代入するとf(0,0)とfxy(0,0)以外すべて0になってしまうのでおかしいのではないかと思い質問しました。 どこがまちがってしまっているでしょうか?? どうしても分からないので教えてください。 ^xyはxy乗ということを、fxはxでの微分を意味します。 お願いします