• ベストアンサー
  • すぐに回答を!

微分の3次近似多項式について少し質問です><

微分の3次近似多項式について少し質問です>< お願いします。 f(x,y)=e^xyの3次近似多項式を求める問題があったのですがやってみたところ fx=ye^xy   fy=xe^xy fxx=y^2・e^xy   fyy=x^2・e^xy fxxx=y^3・e^xy   fyyy=x^3・e^xy fxy=e^xy+xye^xy fxyx=2ye^xy+xy^2・e^xy fxyy=2xe^xy+x^2・y・e^xy となり近似式にいれるためにそれぞれに(0,0)を代入するとf(0,0)とfxy(0,0)以外すべて0になってしまうのでおかしいのではないかと思い質問しました。 どこがまちがってしまっているでしょうか?? どうしても分からないので教えてください。 ^xyはxy乗ということを、fxはxでの微分を意味します。 お願いします

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • info22_
  • ベストアンサー率67% (2650/3922)

>どこがまちがってしまっているでしょうか?? 間違っていません。 合っていますよ。 (x,y)=(0,0)での近似式であれば f(x,y)=e^(xy) =f(0,0)+xfx(0,0)+yfy(0,0) +(1/2)(x^2fxx(0,0)+2xyfxy(0,0)+y^2fyy(0,0)) +(1/3)(x^3fxxx(0,0)+3x^2yfxxy(0,0)+3xy^2fxyy(0,0)+y^3fyyy(0,0)) + ... =1+xy+(1/2)x^2y^2+(1/6)x^3y^3 + ... 三次の項までの近似なら e^(xy)≒1+xy で合っていますよ。 参考までに(x,y)=(0,0)付近のy=e^(xy)のグラフ(水色)と 三次の項までの近似式z=1+xyのグラフ(黒色)を描いて添付します。 (x,y)=(0,0)付近で良い近似となっていることが分かります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

図までつけてくださりありがとうございます。より理解が深まりました。 感謝です。

その他の回答 (4)

  • 回答No.5
  • alice_44
  • ベストアンサー率44% (2109/4758)

三次までの近似なら、 e↑(xy) ≒ 1 + xy + (1/2)(x↑2)(y↑2) + (1/6)(x↑3)(y↑3) だろうけれど。

共感・感謝の気持ちを伝えよう!

  • 回答No.4
  • info22_
  • ベストアンサー率67% (2650/3922)

#3です。 3次元の曲面の図が添付されていなかったようですので図を添付しなおします。

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

何も、おかしくないです。 質問文中の計算と同様にして、偏微係数は、 x で微分する回数と y で微分する回数が同じ場合だけ、 0 でなくなります。 そのことは、e^(xy) の二変数テイラー展開が、 (x^n)(y^n) という形の項だけからできている ことを示しています。 e^z のテイラー展開に z = xy を代入したものが、 ちょうどそういう形をしていますよね。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

3次の近似をするのであれば、3回微分のところには(0,0)を代入するのではなくて f(h,k)=f(0,0)+~~~+(3次部分)(th,tk),(0≦t≦1). のように、代入するべきなのではないでしょうか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分の3次近似多項式について少し質問です><

    微分の3次近似多項式について少し質問です>< お願いします。 2次近似式の場合の公式は f(x,y)=f(0,0)+fx(0,0)・x+fy(0,0)・y+1/2!{fxx(0,0)・x^2+2fxy(0,0)・x・ y+fyy(0,0)・y^2} になると思うので、 3次近似式多項式の場合は上の公式に 1/3!{fxxx(0,0)・x^3+3fxxy(0,0)・x^2・y+3fxyy(0,0)・x・y^2+fyyy(0,0)・y^3}を加えれば良いですよね?? 少し不安だったので質問しました。間違っていたら教えてください。 ちなみに^2は二乗を、fxxなどをそれで(xで微分)したことを表します。 お願いします。

  • 2変数関数のテイラーの定理の問題について

    どうにか2変数関数のテイラーの定理の問題まで解き進めることができました。 ここまでこれたのも、こちらでご指導くださった皆様のおかげと大変感謝しております。まだまだ勉強不足ですが、引き続きご鞭撻のほど、よろしくお願いしまします。 2変数関数のテイラーの定理の問題を解いてみたのですが、 これであっているのか、ご指導いただければと思います。 特に(5)が自信ないです。 【問題】 次の2変数関数に、n=2の場合の「マクローリンの定理」を適用せよ。 ※2変数関数のマクローリンの定理 f(x,y)=f(0,0) +(1/1!){x・(δ/δx)+y・(δ/δy)} f(0,0) +(1/2!){x・(δ/δx)+y・(δ/δy)}^(2) f(0,0) +… +(1/(n-1)!){x・(δ/δx)+y・(δ/δy)}^(n-1) f(0,0) +(1/n!){x・(δ/δx)+y・(δ/δy)}^(n) f(θx,θy) (0<θ<1) ※2変数関数のマクローリンの定理(n=2の場合) f(x,y)=f(0,0)+{fx(0,0)+fy(0,0)y} +(1/2){fxx(θx,θy)x^(2)+2fxy(θx,θy)xy+fyy(θx,θy)y^(2)} (1) x+y f(x,y)=x+y f(0,0)=0 fx(x,y)=1 fx(0,0)=1 fy(x,y)=1 fy(0,0)=0 fxx(x,y)=0 fxx(0,0)=0 fxy(x,y)=0 fxy(0,0)=0 fyy(x,y)=0 fyy(0,0)=0 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(0x^2+2・0xy+0・y^2)=0 (2) x^2+y^2 f(x,y)=x^2+y^2 f(0,0)=0 fx(x,y)=2x fx(0,0)=0 fy(x,y)=2y fy(0,0)=0 fxx(x,y)=2 fxx(θx,θy)=2 fxy(x,y)=0 fxy(θx,θy)=0 fyy(x,y)=2 fyy(θx,θy)=2 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(2x^2+2・0xy+2y^2) =(1/2)(2x^2+2y^2) =x^2+y^2 (3) x^2+2xy+y^2 f(x,y)=x^2+2xy+y^2 f(0,0)=0 fx(x,y)=2x+2y fx(0,0)=0 fy(x,y)=2x+2y fy(0,0)=0 fxx(x,y)=2 fxx(θx,θy)=2 fxy(x,y)=2 fxy(θx,θy)=2 fyy(x,y)=2 fyy(θx,θy)=2 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(2x^2+2・2xy+2y^2) =(1/2)(2x^2+4xy+2y^2) =x^2+2xy+y^2 =(x+y)^2 (4) x^3+y^3 f(x,y)=x^3+y^3 f(0,0)=0 fx(x,y)=3x^2 fx(0,0)=0 fy(x,y)=3y^2 fy(0,0)=0 fxx(x,y)=6x fxx(0,0)=0 fxy(x,y)=0 fxy(0,0)=0 fyy(x,y)=6y fyy(0,0)=0 2変数関数のマクローリンの定理(n=2)を適用する。 ただし、3次式のため、fxx(x,y),fxy(x,y),fyy(x,y)までの計算とする。 f(x,y)=0+(0x+0y)+(1/2)(0・x^2+2・0xy+0・y^2)=0 (5) e^(x)・sin(y) f(x,y)=e^(x)・sin(y) f(0,0)=e^(0)・sin(0)=1・0=0 fx(x,y)=e^(x)・sin(y) fx(0,0)=e^(0)・sin(0)=1・0=0 fy(x,y)=e^(x)・cos(y) fy(0,0)=e^(0)・cos(0)=1・1=1 fxx(x,y)=e^(x)・sin(y) fxx(θx,θy)=e^(θx)・sin(θy) fxy(x,y)=e^(x)・cos(y) fxy(θx,θy)=e^(θx)・cos(θy) fyy(x,y)=e^(x)・(-sin(y))=-e^(x)・sin(y) fyy(θx,θy)=-e^(θx)・sin(θy) 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+1y) +(1/2)(e^(θx)・sin(θy)・x^2+2・e^(θx)・cos(θy)・xy-e^(θx)・sin(θy)y^2) =y+(1/2)e^(θx)(sin(θy)・x^2+2cos(θy)・xy-sin(θy)y^2) =y+(1/2)θ・e^(θx)(sin(y)x^2+2cos(y)xy-sin(y)y^2) =y+(1/2)θ・e^(θx)((x^2-y^2)sin(y)x^2+2cos(y)xy) 以上、よろしくお願いしたします。

  • 高次(階)偏導関数の問題について

    高次(階)偏導関数の問題をどうにか解いてみたのですが、 あっているか自信がありません。特に(6)の問題。 わかる方、ご指導よろしくお願いします。 【問題】 次の関数f(x,y)の2次までの変動関数を求めよ。 (1) x^2+3xy+y^2+2 fx(x,y)=2x+3y fy(x,y)=3x+2y fxx(x,y)=2 fxy(x,y)=3 fyx(x,y)=3 fyy(x,y)=2 (2) log(x^2+y^2+1) d/dt log(t)=1/t δ/δx x^2+y^2+1=2x δ/δy x^2+y^2+1=2y 合成関数の微分の公式を適用し、 fx(x,y)=1/(x^2+y^2+1)*2x=2x/(x^2+y^2+1) fy(x,y)=1/(x^2+y^2+1)*2y=2y/(x^2+y^2+1) 商の微分の公式を適用し fxx(x,y)={(2*(x^2+y^2+1)-2x(2x)}/(x^2+y^2+1)^2=-2(x^2-y^2-1)/(x^2+y^2+1)^2 同様に計算し、 fxy(x,y)=-4xy/(x^2+y^2+1)^2 fyx(x,y)=-4xy/(x^2+y^2+1)^2 fyy(x,y)=2(x^2-y^2+1)/(x^2+y^2+1)^2 (3) e^(xy) d/dt log(t)=e^t δ/δx xy=y δ/δy xy=x 合成関数の微分の公式を適用し、 fx(x,y)=e^(xy)*y=y e^(xy) fy(x,y)=e^(xy)*x=x e^(xy) fxx(x,y)=y e^(xy)*y=y^2 e^(xy) fxy(x,y)=y e^(xy)*x=xy e^(xy) fyx(x,y)=x e^(xy)*y=xy e^(xy) fyy(x,y)=x e^(xy)*x=y^2 e^(xy) (4) e^(2x+3y) d/dt log(t)=e^t δ/δx 2x+3y=2 δ/δy 2x+3y=3 合成関数の微分の公式を適用し、 fx(x,y)=e^(2x+3y)*2=2 e^(xy) fy(x,y)=e^(2x+3y)*3=3 e^(xy) fxx(x,y)=2 e^(2x+3y)*2=4 e^(xy) fxy(x,y)=2 e^(2x+3y)*3=6 e^(xy) fyx(x,y)=3 e^(2x+3y)*2=6 e^(xy) fyy(x,y)=3 e^(2x+3y)*3=9 e^(xy) (5) x^2+3xy+4y^2+1 fx(x,y)=2x+3y fy(x,y)=3x+8y fxx(x,y)=2 fxy(x,y)=3 fyx(x,y)=3 fyy(x,y)=8 (6) xy(x^2-y^2)/(x^2+y^2) ((x,y)≠(0,0)) { 0 ((x,y)=(0,0)) fx(0,0)={f(x,0)-f(0,0)}/x=0/x=0 同様に fy(0,0)={f(0,y)-f(0,0)}/y=0/y=0 (x,y)≠0のとき、商の微分の公式を適用して fx(x,y)=y(x^4+4x^2y^2-y^4)/(x^2+y^2)^2 fy(x,y)=x(x^4-4x^2y^2-y^4)/(x^2+y^2)^2 再度、商の微分の公式を適用して fxx(x,y)=-4xy^3(x^2-3y^2)/(x^2+y^2)^3 fxy(x,y)=(x^6+9x^4y^2-9x^2y^4-y^6)/(x^2+y^2)^3 fyx(x,y)=(x^6+9x^4y^2-9x^2y^4-y^6)/(x^2+y^2)^3 fyy(x,y)=-4xy(2x^4+x^2+y^4)/(x^2+y^2)^3 疑問点1 fxx(0,0),fxy(0,0),fyx(0,0),fyy(0,0)についても、 求めなくてもいいのでしょうか? 疑問点2 商の微分を2回行うことにより、計算結果を導いたのですが、 もっと簡単な手順で導く公式等はないのでしょうか? たびたびの質問で申し訳ありませんが、 ご指導のほどよろしくお願いします。

  • f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求

    f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求める問題で解答はfx=(1+xy)e^(xy+2y^2),fy=x(x+4y)e^(xy+2y^2),fxx=(2y+xy^2)e^(xy+2y^2), fxy={x+(1+xy)(x+4y)}e^(xy+2y^2),fyy={4x+x(x+4y)^2}e^(xy+2y^2)でそれぞれどのようにして微分されているのかを詳しく教えてください 特にfxxからまったく分からないので教えてください 回答よろしくお願いします。

  • f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求

    f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求める問題で解答はfx=(1+xy)e^(xy+2y^2),fy=x(x+4y)e^(xy+2y^2),fxx=(2y+xy^2)e^(xy+2y^2), fxy={x+(1+xy)(x+4y)}e^(xy+2y^2),fyy={4x+x(x+4y)^2}e^(xy+2y^2)でそれぞれどのようにして微分されているのかを詳しく教えてください fxxから本当に分からないので教えてください 回答よろしくお願いします

  • 偏微分の問題なんですが…。

    すごい初歩的だと思いますが、F=F(x,y)のとき Yxx=∂/∂x(-Fx/Fy)=? ?をFx,Fy,Yx,Fxx,Fyyを用いて表すとどうなりますか?

  • 停留点

    停留点を求めよとの問題があったのですが、 導き方は判別式? fxx(a,b)fyy(a,b)-{fxy(ab)}^をつかって0より大きいか、小さいか、0かを調べる。そのあとfx=0,fy=0で停留点を求めればいいのですよね?それはいいのですが、 f(x,y) = (e^x)y この微分ってどうすればいいのでしょうか?なんかド忘れした感じがあるのですが・・・・・・ 自分はfx=(e^x)y,fy=x(e^x) となったのですが間違っていますか? この程度のレベルの微分(特にf(x,y) = y(e^x)みたいな感じ)の問題があるページとかあったら載せてください。

  • 以前も質問しましたが解決できませんでした。微分の問題です。

    f(x,y)=(xy)(x^2-y^2)/x^2+y^2 (x,y)≠(0,0) =0 (x,y)=(0,0)について 1.fが平面全体で連続であることを証明してください。 2.fx(x,y),fy(x,y) (x,y)≠(0,0)とfx(0,0),fy(0,0)を求めてください 3.fxy(0,0)とfyx(0,0)を求めてください 4.fが全微分可能である理由と、fがC2級である理由を教えてください

  • テイラー展開

    f(x,y) = 3x^2+4xy-5y^2の(1,-2)のまわりでの2次のテイラー展開を求める問題なのですが テイラー展開は f(x,y) = f(1,-2) + (fx(1,-2)x + fy(1,-2)y)+1/2(fxx(1,-2)x^2 + 2fxx(1,-2)xy + fyy(1,-2)y^2) + R3 でいいのでしょうか? これから第二近似を行うと fxxx = fyyy = 0であるからR3=0 つまり、 f(1,-2) = -25 - 2x -4y + 3x^2 -5y^2 + 4xy これでいいのでしょうか? もしかしたら2変数におけるテイラー展開を誤って学習してしまったかもしれないので。

  • 数学

    わかりません解き方教えてください z=f(x,y)は2回偏微分可能でfxy,fyxは共に連続とする。 1. (3(∂/∂x+2(∂/∂y)^2 f(x,y) をfxx, fxy, fyyを用いて表せ。 2. f(x,y)=e^(xy)のとき, (3(∂/∂x+2(∂/∂y)^2 f(0,0)を求めよ。