• ベストアンサー
  • すぐに回答を!

偏微分の「fxy」と「fyx」が同じ値になるときについて

偏微分で fxy(x、y)とfyx(x、y)が点(a,b)を含むある開集合で 連続であるときfxy(a、b)=fyx(a、b)といえる。 という定理があるのですが、この解釈のしかたとして 例えばfxy(x、y)とfyx(x、y)が 0≦x<∞かつ0≦y<∞のような集合(半開集合?) で連続であるとき、 開集合0<x<∞かつ0<y<∞、では fxy(x、y)=fyx(x、y)といえるが、 点(0,3)、(0,0)、や(3,0)のような、 集合の境界上ではfxy(x、y)≠fyx(x、y)となる場合もある。 という解釈のしかたでいいのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数676
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • koko_u_
  • ベストアンサー率18% (459/2509)

非常にうるさく言えば、jackstraw さんの挙げられた定理からは境界線上の fxy(x,y) fyx(x,y) の値については「何らの結論も得られない」ということです。 「fxy(x,y) ≠ fyx(x,y) となる場合もある」という言及自体も一つの結論になっているので注意が必要な場合もあるでしょう。 実際にそのような f(x,y) を挙げよと言われても私は即答できないし、特定の点(0,3)で fxy(0,3)≠fyx(0,3)となる f(x,y) が存在するかもわかりません。

共感・感謝の気持ちを伝えよう!

質問者からの補足

解答ありがとうございます! それでは、この定理は、 ________________________________________________ 例えばfxy(x、y)とfyx(x、y)が 0≦x<∞かつ0≦y<∞のような集合で連続であるとき、 開集合0<x<∞かつ0<y<∞、では fxy(x、y)=fyx(x、y)といえるが、 点(0,3)、(0,0)、や(3,0)のような、 集合の境界上では“ fxy(x,y)とfyx(x,y)の関係性(等しいか等しくないか)については、何らの結論も得られない”。 __________________________________________________________ という解釈のしかたでいいのでしょうか?

関連するQ&A

  • Fxy=Fyx の証明はこれではだめですか?(偏微分の順序交換の証明)

    Fは(x,y)で連続かつx,yについて偏微分可能し、FxyとFyxも(x,y)において存在するとき、Fxy=Fyxとなる。なお、FxyとはFをxについて偏微分して次にyについて偏微分したものとする。 これを示すと Fxy=lim(h→0)1/h{Fy(x+h,y)-Fy(x,y)} Fy=lim(h→0)1/h{F(x,y+h)-F(x,y)}より、 Fxy=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} 一方、Fyx=lim(h→0)1/h{Fx(x,y+h)-Fx(x,y)}、 Fx=lim(h→0)1/h{F(x+h,y)-F(x,y)}より Fyx=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x,y+h)-F(x+h,y)+F(x,y))} =lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} したがって Fxy=Fyxが成立する。 こうやって示したのですが、ダメですか?

  • 微分方程式の偏微分問題について

    微分方程式の偏微分問題について 大学で微分方程式の授業を履修しているのですが、指定された問題がまったくわかりません 問u0>0,p>1とする。次の1階単独ODEの初期値問題について、(u0の0は小文字でユーゼロです) du/dt=u^p (t>0) u(0)=u0 u(t)が発散する時刻をTmaxとするとき、解u=u(t) (0<t<Tmax)を求めよ という問題です。 偏微分の計算の説明を少しされただけなので、このような文章問題はどうすればいいのかまったくわかりません。 一応この問題の前に 『1階単独ODEの初期値問題と局所解の一意存在定理』 2変数関数f(x,y)は点(x0,y0)の近くで偏微分できて、さらにその偏導関数fx(x,y),fy(x,y)は連続とする(これは短く「点(x0,y0)の近くで連続微分可能である」という)。そのとき、次の1階単独ODE y´=f(x,y), (y=y(x);unknown) について、y(x0)=y0をみたす解がx=x0の近くでただ1つ存在する という定理が書いてありましたが、説明されていないので自分で読むだけではまったく理解できませんでした。 明日までなので焦っています。 どなたか問題を解いて下さる方はいらっしゃいませんでしょうか?

  • 偏微分の順序変更について質問

    (x,y)を独立変数として、ある関数Fをそれぞれの変数で1回づつの偏微分(それぞれ1回なので都合2回)することを考えます。Fxyと表示します。これは大抵の場合、微分の順番の変更が許されて、Fyxにもなると思います。(それが許されない場合もあるとは思いますが、あくまでもだいたいの場合です。)Fの2回の微分可能性は当然の条件として成立していると仮定してのことです。 別の独立変数(ξ,η)を考えます。この場合でも上と同様にFξη=Fηξが成り立つとします。 そこで質問ですが、Fxξ=Fξxという偏微分の順番の変更はおなじような理屈で成立するものでしょうか。私はできないんじゃないかなと思っているのですが。このような問題って微分積分学のテキストには説明されているでしょうか。"説明されない=できない"ということでしょうか。 よろしくお願いします。

  • 偏微分の問題

    物理学基礎論で、偏微分を習いましたがよく分かりません>< 今朝、数学のジャンルで質問させていただきましたが、質問の意味が分からないと言われたので、問題ごとこちらに質問させていただきます。 1、次の偏微分を求めよ。ただし位置ベクトルrの独立変数はデカルト座標(x,y,z)である。 ∂r/∂x これに対し私の答えは・・・ Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) 2、次の偏微分を求めよ。ただし()-()ではデカルト座標xyzを極座標rθΦの関数とし、()-()では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 ()Δx/Δθ=rcosθ×cosΦ ()Δy/ΔΦ=rsinθ×cosΦ ()Δz/Δr=cosθ これでよいでしょうか・・・?? ()Δr/Δy=y/√(x^2+y^2+z^2)=y/r ()Δθ/Δz ()ΔΦ/Δx ()()がまったく分かりません^^;たとえば、()ではtanθを微分したらよいのでしょうか?? どなたかよろしくお願いいたします。

  • 偏微分の可能性

    あと数時間でテストなので申し訳ありませんがわかる方は早急に教えていただければありがたいです。 f(x、y)が点(0,0)で偏微分可能であるか調べよという問題があるのですが、この問題はどのように証明すればいいのですか? 点が指定されていなければ微分の公式に当てはめればいいのはわかっているのですが、x、yともに点が指定されているときはどのように証明すればいいのでしょうか?

  • 偏微分について、

    y=f(x) について、 z=g(x、y)=f(x)-yとおいた場合 zは常に、z=0となるとおもうのですが この場合の、 g_y(x,y)=-1について これは、 偏微分の定義 g_y(x,y)=lim(h→0){g(x,y+h)-g(x,y)}/h から y軸方向に少し動いたときのzの変化の割合 と解釈してますが、 z=g(x、y)=f(x)-yのとき zは常に0なのに どうして傾き-1と出るのでしょうか?

  • 偏微分

    数学の問題なのですが、まったくわかりません。 助けてください。 次の関数の偏微分を求めよ。 f(x,y,z)= (1) 2x + 3x^2y + yz^2 + 4 (2) (2x - x^2y)(4y^3 + yz^2) (3) (cosx + 2xz) sin3y (4) 2z^4e^xy + y(sin2x)e^3x たとえば (1) では ∂f / ∂x = 2 + 6xy + yz^2 ∂f / ∂y = 2x + 3x^2 + z^2 ∂f / ∂z = 2x + 3x^2y + 2yz となるのでしょうか?? いまいち偏微分が理解できません。 できれば教えてください!!

  • 偏微分係数の連続性の証明

    関数  f(x,y)= {  0 if(x,y)=(0,0)        xy/√(x^2+y^2 ) otherwise } fの偏微分係数の連続性について確認してください。また、fは点(0,0)において微分可能でないことも示す。

  • 偏微分の問題です。

    偏微分の問題です。 nを4以上の自然数とし,n次元ユークリッド空間の部分集合Cを以下で定義する。 C={(x_1,・・・・,x_n);sin(πx_1)+....+sin(πx_n)=0,sin(πx_1)+sin(2πx_2)....+sin(nπx_n)=0} このとき原点(0,...,0)の適当な開近傍において,x_n-1,x_n が x_1,x_2,...x_n-2の関数として あらわせることを示せ。 という問題です。次の小問としてその関数を偏微分せよとあるので,ある程度具体的な形であらわすのだと思うのですが わかりません。 よろしくお願いします。 πは円周率のパイを表します。見にくくて申し訳ありません。

  • 偏微分

    次の偏微分を求めよ。ただし(1)-(3)ではデカルト座標xyzを極座標rθΦの関数とし、(4)-(6)では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 (1)Δx/Δθ=rcosθ×cosΦ (2)Δy/ΔΦ=rsinθ×cosΦ (3)Δz/Δr=cosθ これでよいでしょうか・・・?? (4)Δr/Δy=y/√(x^2+y^2+z^2)=y/r (5)Δθ/Δz (6)ΔΦ/Δx (5)(6)がまったく分かりません^^;たとえば、(5)ではtanθを微分したらよいのでしょうか?? よろしくお願いします。