- ベストアンサー
極限に関する問題なのですが、、
平面上に2点O1、O2があり、(O1)(O2)=3である。O1を中心とする半径1の円C1とO2 を中心とする半径2の円C2がある。O1を通り、直線(O1)(O2)とのなす角がθ(0<θ<π/6) である直線lとC2の2交点のうち、O1に近いほうをPとする。 (1)O2からlに下ろした垂線の足をHとするとき、O2Hの長さをθで表せ。 (2)線分O1PとC1の交点をQとするときlim(θ→+0)PQ/θ^2を求めよ。 θでどうやって表せばいいのかが分かりません。 詳しい解説をよろしくお願いします!!
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
l の方程式を書いて C2 と連立させればいいんじゃね?