• ベストアンサー
  • すぐに回答を!

模試の振り返り

等差数列{an}があり a2=14,a3ーa7=12を 満たしている。 (1) 数列{an}の 初項aと公差dを 求めなさい。 また一般項anを nを用いて表しなさい。 (2) 20 Σak の値を求めなさい。 k=1 解き方と答えを宜しく お願いしますm(__)m

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • yyssaa
  • ベストアンサー率50% (747/1465)

(1) 数列{an}の 初項aと公差dを 求めなさい。 >a7=a3+4d=a3-12からd=-3・・・答 a1-3=a2=14からa1=17・・・答 また一般項anを nを用いて表しなさい。 >an=17-3(n-1)=20-3n・・・答 (2) 20 Σak の値を求めなさい。 k=1 >Σ[k=1→20](20-3k)=20*20-3*Σ[k=1→20]k =400-3*20*21/2=-230・・・答

共感・感謝の気持ちを伝えよう!

質問者からのお礼

分かりやすい解答 ありがとう ございます☆! いい復習に なりましたm(__)m

関連するQ&A

  • 【難しい‼数列・・】

    第3項が8、第10項が29の等差数列{an}の初項をa、公差をdとする。 (1)a、dの値を求めよ。 (2)Σ(k=1~n)2^akをnの式で表せ。 (3)an≦200であり、an/2が自然数であるanの総和Sを求めよ。 (2)からどうしたらよいのでしょうか…

  • 数学の問題でわからないところがあります。

    どなたか教えてください。 等差数列{an}があり、a2=14、a3-a7=12を満たしている。 (1)数列{an}の初項aと交差dを求めよ。また、一般項anをnを用いて表せ。 (2) 20                Σakの値を求めよ。   k=1 また、 20 Σ|ak|の値を求めよ。 k=1      (3)n≧10とする。 n Σ(|ak|-ak)をnを用いて表せ。 k=1 見にくくてすみません。 よろしくお願いいたします。

  • 数学の問題です

    数がいくつかあるのですがすいません><; 1.初項5 公差2の等差数列に対して、初項から第何項までの我がはじめて777より大きくなるか答えよ 2.初項がaで、公差dが自然数である等差数列anが2つの条件  A: a3+a5+a7=93 B:an>100となる最小のnは15 (1)公差d? (2)初項a? (3)a1+a2+・・・・+an>715となる最小のn? 3. 初項が6で 公差dの等差数列がある。初項から第4項までの輪と初項から第12項までの我が等しいとき、第n項から第n+7項までの和をTnとするとき、|Tn|の最小値とそのときのn? 答え: 1.26 2.(1)d=7 (2)a=3 (3)n=15 3・n=5のとき。最小値0 という答えなのですが。やり方などが全く分からないので・・ 出来れば詳しい解説とともにお願いします・・

  • 数学Bの問題

    数列に関する問題 下記の問題の解答と解説もお願いします 1, 一般項が次の式で表される数列について (1) an=3n-4 初項から第5項まで (2) an=(2n+1)^2 初項から第5項まで 2. 次の等差数列の一般項と第30項 (1) 初項 -2, 公差 3 (2) 9,3,-3,-9 ・・・ 3,次の等差数列の末項が第何項なのか (1) 3,8,13,・・・,38 (2) -4,-6,-8,・・・,-42 4, 第6項が -2, 第15項が 25, である等差数列{an}の初項,公差,一般項 5, 次の等差数列の和 (1) -2,1,4,7,10,13,16,19 (2)初項 -9, 公差 -4, 項数 36 (3)初項 16, 公差 -4, 項数 n 6, 次の等比数列の一般項 (1) 3,-6,12,-24・・・ (2) 3, -3/2, 3/4, -3/8,・・・ 7, 次の等比数列の末項は第何項か (1) 1,2,4,8・・・,512 (2) 3,12,48・・・,768

  • 等差数列です。

    等差数列{an}はa2+a4=16, a3+a5=22を満たしている。このとき、数列{an}の初項(ア),公差(イ)である。また等差数列{bn}は初項から第5項までの和が45、第6項から第10項までの和が145である。この時数列{bn}との初項は(ウ),公差は(エ)である。二つの数列{an}に共通な項を小さい順にC1,C2,C3....,,,,とすると数列{Cn}は初項が(オ)、公差が(カキ)の等差数列である。 また、二つの数列{an}と{bn}の少なくとも一方に含まれている項を小さい順に並べて、d1,d2,d3,......とする。ただし共通な項はいずれか一方のみを並べるものとする。この時、dn>100を満たす最小の整数nは(クケ)であり、d(クケ)=(コサシ)であるさらにΣ[i=k,n],(クケ)=(スセソタ)である。 よろしくお願いします。上手く書けませんでした御理解いただけたでしょうか。

  • 数列とシグマ計算

    数列{An}は初項3、公差2の等差数列とすると一般項An=3+2(n-1)=2n+1である。 このときΣ(註:k=1からnまで 以下略)1/[(Ak)*{A(k+1)}]を求めよ。 ・・・という問題が出されたのですが、[(Ak)*{A(k+1)}]=(2k+1){2(k+1)+1}=(2k+1)(2k+3)より、 Σ1/[(Ak)*{A(k+1)}]=Σ1/{(2k+1)(2k+3)}=Σ1/(4k^2+8k+3) までは変形できたのですが、この後がわかりません。 どなたかご指南頂けないでしょうか。

  • 2数列の共通項から新しい数列を作ります

    初項が1,公差が3の等差数列{An}と 初項が11,公差が10の等差数列{Bn} に共通に含まれる項を小さい順に並べてできる数列{Cn}の一般項Cnを求めよ。 ------------------------------- という問題で、自分でといてみたところ、 An=3n-2 {Bn}=11,21,31,41,…,10n+1 An=Bnが成り立つBnの最小値は31なので、 初項は31、公差は3×10=30 よって、{Cn}=31+(n-1)・30=30n+1 ------------------------------- と解いてみたのですが、模範解答はもっと長く書いてありました。私の解き方ではダメなのでしょうか??または今回は偶然求められただけなのでしょうか? ちなみに、模範解答を読んでも意味がわからないので、どなたかわかりやすくまとめて頂けるとありがたいです。 ------------------------------- 【模範解答】 An=3n-2 Bn=10n+1 等差数列{An}の第p項と等差数列{Bn}の第q項が一致する。 すなわち、Ap=Bq。このとき、 3p-2=10q+1 …(1) 3(p-1)=10q これより、3と10は互いに素であるから、qは3の倍数となり、 q=3k (kは整数) …(2) とおける。 (2)を(1)に代入して、 3p-2=10×3k+1 p=10k+1 よって、 p=10k+1 q=3k p>0,q>0より,k>0であるから、 A(10k+1)=3×(10k+1)-2 =30k+1 したがって、{Cn}=30n+1

  • 数列の問題です

    数列anの初項から第n項まあでの和をSnとする。 (1)Sn=1/2n^2+nが成り立つ時(i)一般項an(ii)Σ(k=1~n)kakの値(iii)Σ(k=1~n)1/ak・ak+1の値 (2)Sn=3an+4n+2が成り立つ時(i)a1の値(ii)an+1をan表わせ(iii)一般項anを求めよ 上の2つの問題の答えをどなたか教えてください。 特に(1)は解答の過程も教えていただけると幸いです。

  • 数列の問題で質問です

     初項が2、公比が正である等比数列anの第3項は18である。また、等差数列bnの第3項は-19で、初項から第8項までの和は-116である。  (1)数列anの公比を求め、anをnを用いて表せ。  (2)bnをnを用いて表せ。また、bn<0を満たす最大の自然数nの値を求めよ。  (3)不等式Σ(k=1からn)   ak > Σ(k=1から20)   |bk|  を満たす最小の自然数nの値を求めよ。  いつもお世話になっております。(1)は自力で解いて公比=3、an=2×3^n-1となりましたが、ここから先が分かりません。その上に(1)にも自信がありません。解き方を教えてください。よろしくお願いします。

  • 等差数列

    等差数列{an}はa2+a4=16, a3+a5=22を満たしている。このとき、数列{an}の初項(ア),公差(イ)である。また等差数列{bn}は初項から第5項までの和が45、第6項から第10項までの和が145である。この時数列{bn}との初項は(ウ),公差は(エ)である。二つの数列{an}に共通な項を小さい順にC1,C2,C3....,,,,とすると数列{Cn}は初項が(オ)、公差が(カキ)の等差数列である。 また、二つの数列{an}と{bn}の少なくとも一方に含まれている項を小さい順に並べて、d1,d2,d3,......とする。ただし共通な項はいずれか一方のみを並べるものとする。この時、dn>100を満たす最小の整数nは(クケ)であり、d(クケ)=(コサシ)であるさらにΣ[i=k,n],(クケ)=(スセソタ)である。 よろしくお願いします。昨夜投稿しましたがうまく投稿出来たかどうかわからないので再度投稿しました。もし重なっていましたらごめんなさい。よくわからないので。 投稿の注意点も教えていただけたら嬉しいです。