• 締切済み
  • すぐに回答を!

数列とシグマ計算

数列{An}は初項3、公差2の等差数列とすると一般項An=3+2(n-1)=2n+1である。 このときΣ(註:k=1からnまで 以下略)1/[(Ak)*{A(k+1)}]を求めよ。 ・・・という問題が出されたのですが、[(Ak)*{A(k+1)}]=(2k+1){2(k+1)+1}=(2k+1)(2k+3)より、 Σ1/[(Ak)*{A(k+1)}]=Σ1/{(2k+1)(2k+3)}=Σ1/(4k^2+8k+3) までは変形できたのですが、この後がわかりません。 どなたかご指南頂けないでしょうか。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.3
  • lusa
  • ベストアンサー率40% (6/15)

回答ではないのですが、これを知っておくと便利だろうと思うので 書きたいと思います(見づらいと思いますが…)。 ***部分分数分解*** 1/(n+a)(n+b) = 1/(b-a) * {1/(n+a) - 1/(n+b)}…(1) 1/(n+a) - 1/(n+b) = (b-a)/(n+a)(n+b) 両辺を(b-a)で割ると(1)になって、証明が出来ます。 あとは、nの係数が1以外(質問では2ですが)ならば 最初に外に出します。 1/(2k+1)(2k+3) = 1/4(k + 1/2)(k + 3/2) = 1/4 * 1/(k + 1/2)(k + 3/2) = …

共感・感謝の気持ちを伝えよう!

  • 回答No.2

1/{(2k+1)(2k+3)}=(1/2){1/(2k+1)-1/(2k+3)} と変形できます。 Σ1/{(2k+1)(2k+3)}=Σ(1/2){1/(2k+1)-1/(2k+3)} =(1/2)=Σ{1/(2k+1)-1/(2k+3)} =(1/2)[{1/(2*1+1)-1/(2*1+3)}+{1/(2*2+1)-1/(2*2+3)}+{1/(2*3+1)-1/(2*3+3)}+・・・+{1/(2*(n-1)+1-1/(2*(n-1)+3)}+{1/(2*n+1)-1/(2*n+3)}] 後は()の中を計算して次に{}を開いてみるとどうなるかわかると思います。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

展開はまずい… 部分分数分解でしょう。 1/(2k+1)-1/(2k+3)=2/{(2k+1)(2k+3)} より、 1/{(2k+1)(2k+3)}={1/(2k+1)-1/(2k+3)}/2 を利用すれば、爽快な答えが出ます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 【難しい‼数列・・】

    第3項が8、第10項が29の等差数列{an}の初項をa、公差をdとする。 (1)a、dの値を求めよ。 (2)Σ(k=1~n)2^akをnの式で表せ。 (3)an≦200であり、an/2が自然数であるanの総和Sを求めよ。 (2)からどうしたらよいのでしょうか…

  • 数列

    An=3-4n で与えられる等差数列{An}があるとき、 {An}の項を初項から2つおきにとってできる数列A1,A2,A3・・・は等差数列であることを示し、その初項と公差を求めよ という問題なんですが、 問題のヒントに、 2つおきにとってできる数列を{Bn}とすると Bn=A3n-2(n=1,2,3,4,・・・) ってかいてあるんですが、この意味が分かりません どうやってこの式が導かれるのでしょう?

  • 【数列】

    初項が5で、公差が7の等差数列{an}と、 初項が6で、公差が4の等差数列{bn}がある。(n=1,2,3、…) (1)ak=b1となる自然数k、lが存在するとき、 lを7で割ったあまりは? (2)数列{an}と{bn}に共通な高を小さい順に並べた数列{cn}の一般項は? (3)数列{cn}で2000以下の項の和Sは? (1)から分かりません… どうとき始めたらよいか、さっぱりです。 解説付きでお願いしたいです!

  • 等差数列です。

    等差数列{an}はa2+a4=16, a3+a5=22を満たしている。このとき、数列{an}の初項(ア),公差(イ)である。また等差数列{bn}は初項から第5項までの和が45、第6項から第10項までの和が145である。この時数列{bn}との初項は(ウ),公差は(エ)である。二つの数列{an}に共通な項を小さい順にC1,C2,C3....,,,,とすると数列{Cn}は初項が(オ)、公差が(カキ)の等差数列である。 また、二つの数列{an}と{bn}の少なくとも一方に含まれている項を小さい順に並べて、d1,d2,d3,......とする。ただし共通な項はいずれか一方のみを並べるものとする。この時、dn>100を満たす最小の整数nは(クケ)であり、d(クケ)=(コサシ)であるさらにΣ[i=k,n],(クケ)=(スセソタ)である。 よろしくお願いします。上手く書けませんでした御理解いただけたでしょうか。

  • 至急!数列の問題を教えて下さい

    Q.すべての項が正である数列{an}において、初項から第n項までの和をSnとする。 Sn=(a・n^2)+(1/2・an)-3が成り立つとき、数列{an}は等差数列である。 数列{an}の初項と公差を求めよ。 慣れていないので表記がおかしいかもしれません。 よろしくお願いします。

  • 2数列の共通項から新しい数列を作ります

    初項が1,公差が3の等差数列{An}と 初項が11,公差が10の等差数列{Bn} に共通に含まれる項を小さい順に並べてできる数列{Cn}の一般項Cnを求めよ。 ------------------------------- という問題で、自分でといてみたところ、 An=3n-2 {Bn}=11,21,31,41,…,10n+1 An=Bnが成り立つBnの最小値は31なので、 初項は31、公差は3×10=30 よって、{Cn}=31+(n-1)・30=30n+1 ------------------------------- と解いてみたのですが、模範解答はもっと長く書いてありました。私の解き方ではダメなのでしょうか??または今回は偶然求められただけなのでしょうか? ちなみに、模範解答を読んでも意味がわからないので、どなたかわかりやすくまとめて頂けるとありがたいです。 ------------------------------- 【模範解答】 An=3n-2 Bn=10n+1 等差数列{An}の第p項と等差数列{Bn}の第q項が一致する。 すなわち、Ap=Bq。このとき、 3p-2=10q+1 …(1) 3(p-1)=10q これより、3と10は互いに素であるから、qは3の倍数となり、 q=3k (kは整数) …(2) とおける。 (2)を(1)に代入して、 3p-2=10×3k+1 p=10k+1 よって、 p=10k+1 q=3k p>0,q>0より,k>0であるから、 A(10k+1)=3×(10k+1)-2 =30k+1 したがって、{Cn}=30n+1

  • 等差数列

    等差数列{an}はa2+a4=16, a3+a5=22を満たしている。このとき、数列{an}の初項(ア),公差(イ)である。また等差数列{bn}は初項から第5項までの和が45、第6項から第10項までの和が145である。この時数列{bn}との初項は(ウ),公差は(エ)である。二つの数列{an}に共通な項を小さい順にC1,C2,C3....,,,,とすると数列{Cn}は初項が(オ)、公差が(カキ)の等差数列である。 また、二つの数列{an}と{bn}の少なくとも一方に含まれている項を小さい順に並べて、d1,d2,d3,......とする。ただし共通な項はいずれか一方のみを並べるものとする。この時、dn>100を満たす最小の整数nは(クケ)であり、d(クケ)=(コサシ)であるさらにΣ[i=k,n],(クケ)=(スセソタ)である。 よろしくお願いします。昨夜投稿しましたがうまく投稿出来たかどうかわからないので再度投稿しました。もし重なっていましたらごめんなさい。よくわからないので。 投稿の注意点も教えていただけたら嬉しいです。

  • 等差数列{an}がa3=96,a9=54を・・・

    等差数列{an}がa3=96,a9=54をみたすとき、初項は□、公差は□である。 この数列の初項から第n項までの和Snが初めて負になるのはn=□のときで、その時Sn=□である。 □の部分をお願いします!

  • 等差数列

    初項-60、第15項までの和が-60である等差数列がある。 (1)初項から第何項までの和が最小となるか?   答.第8項 (2)初項から第何項までの和がはじめて900を超えるか?   答.第26項 という問題がありました。 (1)は公差が8というのを求め、an=a+(n-1)d<0を満たすnを求めてやり、n<8.5がでたので、答えは第8項となりました。 問題は(2)で、僕の考えではSn=1/2{2a+(n-1)d)}>900を満たすnを求めればいいと思ったのですが、そうすると、n>14.45…となってしまいます。 どこがいけないのでしょうか。回答よろしくお願いします。

  • 慶應経済入試、等差数列の問題です

    AとDを正の実数とし、{An}を初項A、公差Dの等差数列とする。jを1以上の整数とし、 Bn=(An+j)の2乗-(An)の2乗で数列{Bn}を定めるとき、これらは等差数列になるとき、 数列{Bn}の公差をDとJを使って表すのが問題です。 An=A+(N-1)D Bn=(An+j)の2乗-(An)の2乗=(An+j + An)(An+j - An) を計算していくと、{2A+(2N+J-2)D}JD になるところまではわかるのですが、 {2A+(2N+J-2)D}JD を JD(2A+JD)+(N-1)×2JDの2乗 と変形し、等差数列となり、 JD(2A+JD)が初項で、2JDの2乗が公差となるとのことですが、 この変形がいまいちよくわかりにくいところです。 等差数列になるということは、(N-1)の形を作り出しなさいということだとは思うのですが、 初項や公差は定数でなくてもよいのはなぜかもいまいちよくわかりませんので、わかりやすくお教えお願いします。