• ベストアンサー
  • すぐに回答を!

等差数列

初項-60、第15項までの和が-60である等差数列がある。 (1)初項から第何項までの和が最小となるか?   答.第8項 (2)初項から第何項までの和がはじめて900を超えるか?   答.第26項 という問題がありました。 (1)は公差が8というのを求め、an=a+(n-1)d<0を満たすnを求めてやり、n<8.5がでたので、答えは第8項となりました。 問題は(2)で、僕の考えではSn=1/2{2a+(n-1)d)}>900を満たすnを求めればいいと思ったのですが、そうすると、n>14.45…となってしまいます。 どこがいけないのでしょうか。回答よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#250262
noname#250262

久しぶりに適切な質問なので、お答えします。 >> Sn=1/2{2a+(n-1)d)}>900 ではなく、 Sn=n/2{2a+(n-1)d)} > 900 だと思います。 計算して、整理すると、( n - 25) ( n + 9 ) > 0 となります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すみません。凡ミスでした; 回答ありがとうございました。

関連するQ&A

  • 数学「等差数列」の問題が分らないので教えてください

    初項-50、公差3の等差数列の初項から第n項までの和をSnとします。(途中式もお願いします。) (1)第何項が初めて正になりますか。 (2)Snが最小になるnの値を求めてください。 (3)Snの最小値を求めてください。 (4)Snが初めて正となるnの値を求めてください。 ちなみに答えは、 (1)第18項 (2)n=17 (3)-442 (4)n=35 です。よろしくお願いします。

  • 等差数列です。

    等差数列{an}はa2+a4=16, a3+a5=22を満たしている。このとき、数列{an}の初項(ア),公差(イ)である。また等差数列{bn}は初項から第5項までの和が45、第6項から第10項までの和が145である。この時数列{bn}との初項は(ウ),公差は(エ)である。二つの数列{an}に共通な項を小さい順にC1,C2,C3....,,,,とすると数列{Cn}は初項が(オ)、公差が(カキ)の等差数列である。 また、二つの数列{an}と{bn}の少なくとも一方に含まれている項を小さい順に並べて、d1,d2,d3,......とする。ただし共通な項はいずれか一方のみを並べるものとする。この時、dn>100を満たす最小の整数nは(クケ)であり、d(クケ)=(コサシ)であるさらにΣ[i=k,n],(クケ)=(スセソタ)である。 よろしくお願いします。上手く書けませんでした御理解いただけたでしょうか。

  • 等差数列{an}がa3=96,a9=54を・・・

    等差数列{an}がa3=96,a9=54をみたすとき、初項は□、公差は□である。 この数列の初項から第n項までの和Snが初めて負になるのはn=□のときで、その時Sn=□である。 □の部分をお願いします!

  • 等差数列

    等差数列{an}はa2+a4=16, a3+a5=22を満たしている。このとき、数列{an}の初項(ア),公差(イ)である。また等差数列{bn}は初項から第5項までの和が45、第6項から第10項までの和が145である。この時数列{bn}との初項は(ウ),公差は(エ)である。二つの数列{an}に共通な項を小さい順にC1,C2,C3....,,,,とすると数列{Cn}は初項が(オ)、公差が(カキ)の等差数列である。 また、二つの数列{an}と{bn}の少なくとも一方に含まれている項を小さい順に並べて、d1,d2,d3,......とする。ただし共通な項はいずれか一方のみを並べるものとする。この時、dn>100を満たす最小の整数nは(クケ)であり、d(クケ)=(コサシ)であるさらにΣ[i=k,n],(クケ)=(スセソタ)である。 よろしくお願いします。昨夜投稿しましたがうまく投稿出来たかどうかわからないので再度投稿しました。もし重なっていましたらごめんなさい。よくわからないので。 投稿の注意点も教えていただけたら嬉しいです。

  • 等差数列

    等差数列{an}(n=1,2,3,・・)の初項から第n項までの和をSnとする。Snを大きい順に並べると第3項までがそれぞれ22,21,20となるとき、この数列の一般項{an}を求める({an}は無限数列)んですけど、どうすればいいのかわかりません。

  • 至急!数列の問題を教えて下さい

    Q.すべての項が正である数列{an}において、初項から第n項までの和をSnとする。 Sn=(a・n^2)+(1/2・an)-3が成り立つとき、数列{an}は等差数列である。 数列{an}の初項と公差を求めよ。 慣れていないので表記がおかしいかもしれません。 よろしくお願いします。

  • 数学の問題です

    数がいくつかあるのですがすいません><; 1.初項5 公差2の等差数列に対して、初項から第何項までの我がはじめて777より大きくなるか答えよ 2.初項がaで、公差dが自然数である等差数列anが2つの条件  A: a3+a5+a7=93 B:an>100となる最小のnは15 (1)公差d? (2)初項a? (3)a1+a2+・・・・+an>715となる最小のn? 3. 初項が6で 公差dの等差数列がある。初項から第4項までの輪と初項から第12項までの我が等しいとき、第n項から第n+7項までの和をTnとするとき、|Tn|の最小値とそのときのn? 答え: 1.26 2.(1)d=7 (2)a=3 (3)n=15 3・n=5のとき。最小値0 という答えなのですが。やり方などが全く分からないので・・ 出来れば詳しい解説とともにお願いします・・

  • 等差数列の問題です。

    初項が80、公差が-3の等差数列の初項から第n項までの和が最大となるのは、n=○○のときで、その和は○○○○である。 この問題を教えて下さい。 宜しくお願いします。

  • 等差数列

    第7項が49、第16項がー5となる等差数列〔an〕の初項を求めるのはわかるのですが、この初項から第n項までの和Snが最大となるときのnの値、および最大値Snを求める方法がわかりません。 Snの最大値とan>=0とはどんな関係があるのでしょうか? どうしてan>=0がでてくるのでしょうか?

  • 等差数列の問題で質問です。

     ある等差数列の第n項をanとするとき、 a10+a11+a12+a13+a14=365、       a15+a17+a19=-6 が成立している。 (1)この数列の初項と公差を求めよ。 (2)この等差数列の初項から第n項までの和をSnとするとき、Snの最大値を求めよ。  見にくくてすみませんが、教えてください。チャートにも載っておらず自力では解けませんでした。 なるたけ早い回答が嬉しいので、(1)だけでも分かれば教えてください。