• ベストアンサー
  • すぐに回答を!

条件x[1]=1,x[n+1]=x[n]+・・・

(1)条件x[1]=1,x[n+1]=x[n]+2^2(n=1,2,3,・・・)によって定められる数列{xn}の一般項はx[n]=□である。 (2)条件y[1]=4/3, 1/y[n+1]=4/y[n] + 3/4 (n=1,2,3,・・・)によって定められる数列{yn}の 一般項はy[n]=□である。 漸化式の問題です。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#160544
noname#160544

(1)前の項に4足していく数列は等差数列 公式よりx[n]=1+(n-1)*4=4n-3 (2)1/y[n]を数列b[n]と考えると b[n+1]=4b[n] + 3/4 b[n]、b[n+1]をある定数cと考えると c=4c+3/4 3c=-3/4 c=-1/4 よってb[n+1]=4b[n] + 3/4は b[n+1] + 1/4=4(b[n] + 1/4)と書き換えられる b[n] + 1/4をc[n]という数列と考えると c[n+1]=4c[n] 等比数列になっている b[1]は3/4だからc[1]は1 公比は4 よってc[n]=1・4^(n-1)=4^(n-1) c[n]=b[n] + 1/4だから b[n] + 1/4=4^(n-1) b[n]=4^(n-1) - 1/4 b[n]=1/y[n]だから 1/y[n]=4^(n-1) - 1/4=4^n/4 - 1/4=(4^n - 1)/4 y[n]=4/(4^n - 1) 間違ってたら申し訳ない

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 代数学の問題を教えて下さい。

    この問題が分かりません。お願いいたします。 行列A= (0 2 -1) (1 1 -1) (-2 2 1) とする。 X=1,Y0=0,Z0=0である。n>=0で漸化式 X(n+1)=2Yn-Zn Y(n+1)=Xn+Yn-Zn Z(n+1)=-2Xn+2Yn+Zn を満たす数列{Xn}{Yn}{Zn}を考える(n>=0)。このとき 一般項Xn,Yn.Znを求めなさい という問題です。どうかお願いいたします。

  • 数学B 数列 センター向けの問題です

    数列{xn}は x1=5,x(n+1)=xn+2 (n=1,2,3,・・・) で定義された数列である。 x2=7,x3=9 であり、 xn=2n+3 である。 次に、数列{yn}は y1=3,y(n+1)=yn+2n+3 (n=1,2,3,・・・) で定義された数列である。このとき yn=n^ア+イn Σ[k=1→n]yk=(1/6)n(n+ウ)(エn+オ) である。 さらに、数列{zn}を x1,y1,y2,x1,x2,x3,y1,y2,y3,y4,・・・ とし、この数列{zn}を x1|y1,y2|x1,x2,x3|y1,y2,y3,y4|・・・ のように、1個、2個、3個、4個、・・・と区画に分ける。すなわち、l=1,2,3,・・・として 第(2l-1)区画にはx1,x2,x3,・・・,x(2l-1) の項があり、 第2l区画にはy1,y2,y3,・・・,y2l の項があるように区画に分ける。 このとき、z199は第カキ区間のク番目の項であるから z199=ケコ である。また Σ[k=200→240]zk=サシスセ である。 解答 n^ア+イn=n^2+2n (1/6)n(n+ウ)(エn+オ)=(1/6)n(n+1)(2n+7) カキ=20 ク=9 ケコ=99 サシスセ=3815 この問題の解き方がわかりません 解き方を教えて下さい よろしくお願いします

  • 漸化式a(n+1)=p・a(n)+qの解き方

    お世話になっております。基本の漸化式について質問させて下さい。 教科書の基本例題を通して解説下さると有り難いです。 問「条件 A1=1、A(n+1)=3・A(n)+2 で定まる数列{An}の一般項を求めよ」 まず、漸化式についてA(n+1)=x、A(n)=x とおいて方程式x=3x+2 …(1)を立てる。 漸化式から(1)式を辺々引いて、A(n+1)-x=3{A(n)-x}…(2) (2)が成り立つことは、(1)の解x=-1を(2)に代入して展開すれば成り立つから、(1)(2)の意味はわかりました。 次に教科書の解では、A(n)-x=B(n)とおくとき、(2)式は、B(n+1)=3・B(n)…(3) と表せることが、唐突に書かれておりましてこの意味が中々解らずに困っておるのですが、色々探ってみたら (3)式が成り立つのは、与えられた漸化式から {An}=1,5,17,53,……であるから、{Bn}={An+1}=2,6,18,54,……であって、ここから例えば n=1のとき(2)式の左辺はA(2)-(-1)=A(2)+1=6。つまり{Bn}、(n=1,2,3……)に対して{B(n+1)}に等しいから、(3)式が成り立つということでしょうか。 また、この(回りくどい)質問が仮に正しいとして、この基本の漸化式を解く場合はいつもこの考え方(与えられた条件から元の数列の3~4項くらいは求めておく)で解くものでしょうか。 或いは上で書いた教科書の解のように、即座にB(n+1)=p・B(n)が成り立つものとして解くのでしょうか。 長ったらしい質問で申し訳ありませんが、もう少しで基本が掴めそうなので、駄目押しのご回答を下さい。宜しくお願いします。

  • a_1 = √3, a_{n+1} = √(2+a_n) で定まる数列

    a_1 = √3, a_{n+1} = √(2+a_n) で定まる数列 {a_n} の一般項は? 上の漸化式は、どうやら一般項が求まるようですが、そのやり方がわかりません。 どなたかご教授お願いします。

  • x[n+1]=√(3xn-2)

    定数(1<a<2)に対して、数列{xn}を x1=a、x[n+1]=√(3xn-2)(n∈N) で定める 不等式 0<2-x[n+1]≦3(2-xn)/(2+√(3a-2)) が成り立つことを示しlim[n→∞]xnを求めよ 解き方を教えてください!

  • 漸化式がa_n+1 = √(pa_n + q )となる数列の一般項

    a_n+1 = √(pa_n + q ) (但しp,qは実数でp≠0、q≠0) このような漸化式の数列a_nの一般項を求めてみたいのですが、 (p,q) = (1,2)の場合については一般項が求まりましたが、 それ以外の場合の一般項が求められません。 このような形の漸化式からa_nの一般項を求める方法はあるのでしょうか?

  • I_(n)=∫x^n/√(x^2+a^2)dxの漸化式の求め方

    I_(n)=∫x^n/√(x^2+a^2)dxの漸化式の求め方 この積分の漸化式は I_(n)=x^(n-1)√(x^2+a^2)/n - a^2(n-1)I_(n-2)/n となります この式の求め方がわかりません 誰か教えてください お願いします

  • 漸化式(隣接2項間)・a_n+1=pa_n+q

    漸化式(隣接2項間)の問題・a_n+1=pa_n+q 隣接2項間の漸化式の問題で 例)α=-1より、a_(n+1)+1=3(a_n+1) これがなぜ「数列(a_n+1)が、初項a_1+1=2,公比3の等比数列であることを表している」のでしょうか? どなたかわかりやすくお願いします。

  • 漸化式

    よろしくお願いします。 [問題] 次の条件で定められる数列{An}の一般項を求めよ。  A1=2、An+1=An/(1+An) (n=1、2、3、……) [解] 条件により A1=2/1、A2=2/3、A3=2/5、A4=2/7  よって、一般に         An=2/(2n-1) ・・・・・・(1)  となることが推測される。   一般項が(1)である数列{An}が、条件を満たすことを示す。  [1] (1)でn=1とおくと  A1=2  [2] (1)をAn/(1+An)に代入すると       An/(1+An)=2/(2n-1)÷{1+2/(2n-1)}              =2/(2n-1)÷(2n+1)/(2n-1)              =2/(2n+1)              =2/{2(n+1)-1}    よって、An+1=An/(1+An) が成り立つ。  [1]、[2]から、求める一般項は  An=2/(2n-1)。 ※このサイトだと項の番号をうまく表記できないので、A1は初項、Anは第n項、An+1は第n+1項などと表しています。 この問題は数列の一般項を推測し、推測した一般項が条件を満たすことを示して、一般項を求めてるみたいなのですが。 [2]の証明で、どうして(1)が漸化式を満たしてるのか、よく分かりません。どうしてですか?。 また、(1)は推測したものだから、全ての自然数nについて(1)が必ず成り立つとは言えないですよね?。なら、(1)を漸化式に代入できないと思うのですが、どうして代入できるのですか?。 以上ですが。分かるかた、教えてくださいm(__)m。

  • 漸化式 a_n = (n+1)a_(n-1) - (n+1)a_(n-2) +1 の解き方

    漸化式が解けなくて困っています. (漸化式): a_n = (n+1)a_(n-1) - (n+1)a_(n-2) +1 (条件) : a_1=1, a_2=4  この漸化式を解く方法,または,そのヒントをどなたか教えていただけないでしょうか? 出来れば,高校生が分かるレベルでの解法でお願いします. あと,係数に変数が入っている漸化式は,数学的帰納法を使えない場合,一般的にどうやって解けばいいのでしょうか? よろしくお願いします.