• ベストアンサー
  • 暇なときにでも

漸化式がa_n+1 = √(pa_n + q )となる数列の一般項

a_n+1 = √(pa_n + q ) (但しp,qは実数でp≠0、q≠0) このような漸化式の数列a_nの一般項を求めてみたいのですが、 (p,q) = (1,2)の場合については一般項が求まりましたが、 それ以外の場合の一般項が求められません。 このような形の漸化式からa_nの一般項を求める方法はあるのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数137
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • chaozux
  • ベストアンサー率40% (25/61)

はじめまして。 a_0の値は分かっている前提で良いのですよね? (1)数学的帰納法で、0≦a_n≦kが成り立つことを証明。 (2)a_n=cosn で置き換える。 cosnに置き換えると、cosθを使った公式などで、変換していけると思います。 大雑把な回答ですみません。参考になれば幸いです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 試しにpとqに適当な値を代入し、a_n = cosnとおいて式変形してみたのですが、 そうするとcosnの4次方程式がでてきます。 この4次方程式を解いても cosn = 定数 となってしまい、一般項にはならなそうなのですが、 4次方程式がでてきた時点でどこか式変形を間違えているのでしょうか?

質問者からの補足

初項については、初項をaとおいた時の一般項を考えています。 等比数列の一般項a_n = ar^(n-1)のような、どんな初項にも 対応できる形を考えています。

関連するQ&A

  • 漸化式から数列の一般項を求める問題で・・

    連続した質問で申し訳ありません。 a(1)=1,2a(n+1)=a(n)+2の漸化式によって帰納的に定められた数列の一般項を求めよという問題なのですが・・ n=1 2a(2)=a(1)+2 n=2 2a(3)=a(2)+2 n=3 2a(4)=a(3)+2 ・・・・・・・・ n-2 2a(n-1)=a(n-2)+2 n-1 2a(n)=a(n-1)+2 よって (a(2)+a(3)+a(4)+…a(n-1))+2a(n)=a(1)+2(n-1) 2a(n)=1+2(n-1)-(a(2)+a(3)+a(4)+…a(n-1)) a(n)=(1+2(n-1)-(a(2)+a(3)+a(4)+…a(n-1)))/2 となると思うのですが、 この先、どのようにしたら回答の「2-(1/2)^(n-1)」に行き着くのかが分かりません。 どなたかどうか解説お願いします。

  • 数列の一般項を求めたいです。

    以下の漸化式を持つ数列を一般項で表したいです。 簡単に求め方が説明できる場合は求め方についてもお教えいただけますと幸いです。 a(n+1)=2*a(n)+(p*n+q)*2^n そもそも、一般項もとまるのでしょうか?

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

  • 漸化式(隣接2項間)・a_n+1=pa_n+q

    漸化式(隣接2項間)の問題・a_n+1=pa_n+q 隣接2項間の漸化式の問題で 例)α=-1より、a_(n+1)+1=3(a_n+1) これがなぜ「数列(a_n+1)が、初項a_1+1=2,公比3の等比数列であることを表している」のでしょうか? どなたかわかりやすくお願いします。

  • 数列の一般項

    次の条件を満たす数列 { a_n }の一般項を5種類求めたいのです。 数列 { a_n } の条件 : a_1 = 1, a_2 = 2, a_3 = 3, a_4 ≠ 4 例えば、 a_(n+2) = a_(n+1) + a_n とおいて、隣接3項間漸化式を解けば、ひとつ求めることができるというアイデアは浮かぶのですが、そのほかにどうすれば求められるでしょうか? ただし、nについて場合分けをするのは無しです。 よろしくお願いします。

  • 数列の一般項

    一般に、数列{F_n}がk項間の漸化式と、F_0、F_1、・・・、F_(k-1) の初期値が与たとき、  1、一般項は存在するのでしょうか(表現できなくても構いません)  2、一般項は一つでしょうか 2は2つの一般項F_n、G_nが存在したとすると、F_k=G_k が示せて、以下帰納的に一致するので、一つだと思いますが・・・。 1についてよろしくお願いします。

  • 分数型漸化式の一般項

    a_{n+1}=ra_n+s/pa_n+q という形の漸化式で a_1=4 a_{n+1}=5a_n+3/a_n+3 特性方程式を使うと x=5x+3/x+3 x(x+3)=5x+3 x^2-2x-3=0 (x-3)(x+1)=0 x=3,-1 になって、これが重解になっていれば、何とかできるのですが・・・・ 一般項を導き出す考え方がおかしいのでしょうか? 明日定期テストなので、早めに回答もらえると嬉しいです。

  • 数列  漸化式

    教科書を参考にしても、以下の四問が分からなくってかなりあせってます。答えまで導いていただいたら幸いです。よろしくお願いします!!  次の漸化式で表された数列の一般項a(n)を求めよ (1) a(1)=1、a(n+1)=a(n) / a(n)+1 (2) a(1)=1、a(n+1) / n+1=a(n) / n +2 (3) a(1)=1、n・a(n+1) =(n+1)・a(n) + n(n+1) (4) a(1)=3、a(n+1) = 3a(n) + 3のn+1乗

  • 数列(一般項の帰納法による定義)

    お世話になっております。 数列の単元で、漸化式から帰納法によって一般項を定める問題例がありますが、これについて少し抽象的な質問をさせて下さい。 例題 次の条件によって定められる数列{An}の一般項を求めよ。 A[1]=2,A[n+1]=An/(1+An) (n=1,2,3,…) まず、実際に幾つかの値を得て、 A[1]=2, A[2]=2/3, A[3]=2/5,……となるから、 An=2/(2n-1)…(1) になると「推測」される。帰納法によってこれを証明する。以下略 ここで、質問です。 数列は、まず幾つかの具体的な値から第n項を定めることから学び始めますが、このことと今、第n項が(1)になると「推測」されることとは何が違うのでしょうか。推測だけではだめだから、帰納法で全ての自然数nについて(1)が成り立つことを示すのがこの問題の目的になるのでしょうが、そうなると、全ての数列について帰納法によって証明しなければいけないような気になってくるのですが、どんなものなのでしょう。 また、この問題は漸化式を拠り所に第n項を類推しますが、この例題ならば具体的な値から規則性が簡単に見出せるから良いのですが、パッと見ただけじゃ規則性の見出しにくい数列は、漸化式を解いて得られた第n項について、やはり帰納法によって証明する必要があるという捉えになるのでしょうか。 以上になります。言葉足らずなところがあるかも知れません。また、筋違いな質問でしたらご容赦下さい。宜しくお願い致します。

  • 連立漸化式から数列の一般項をもとめる問題です

    aは実数とする。x1=y1=2のとき x[n+1]=x[n]+ay[n]・・・・・・・・(1) y[n+1]=2x[n]+2ay[n]-2・・・・(2)     (n=1,2,・・・) から数列{x[n]}、{y[n]}の一般項を求めよ。 この問題で(2)へ(1)を代入し、x1=y1=1よりy[n]=2x[n]-2 (n=1,2,・・・)と分かりました。 この式を(1)へ代入して   x[n+1]=x[n]+a( 2x[n]-2 ) =( 2a+1 )x[n] - 2a(n=1,2,・・・)・・・・・* よって   x[n+2]=(2a+1)x[n+1] - 2a (n=1,2,・・・) -) x[n+1]=( 2a+1 )x[n] - 2a (n=1,2,・・・) --------------------------------------------------------   x[n+2]-x[n+1]=( 2a+1 )(x[n+1]-x[n]) (n=1,2,・・・) が得られました。すると2a+1=0のとき等比数列にならないので場合分けがいると思いましたが 参考書の解説には場合分けがありませんでした。これはどういうわけなのでしょうか?