• 締切済み
  • すぐに回答を!

非線形常微分方程式

以下の非線形の常微分方程式を考えています。 yはxに関する関数 y-xy'-2(y')^2-2yy"=0 あらゆる方法を試しましたが解が出ません・・・。 何かひらめきが必要な気がします。 どなたか解法をよろしくお願い致します。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.6

y=cx+2c^2 とすると y'=c y"=0 -xy'=-cx -2(y')^2=-2c^2 -2yy"=0 y-xy'-2(y')^2-2yy"=cx+2c^2-cx-2c^2=0

共感・感謝の気持ちを伝えよう!

  • 回答No.5

すみません、更に間違いが有りました。 致命的だったんで、また起きてから考えます。

共感・感謝の気持ちを伝えよう!

質問者からの補足

はい、私も計算しましたが下のようなものはまずい気がします。 私は今から頑張ります。 もし解けたらお礼に報告します。 書き込みがなかったらまだ悩んでるということです笑

  • 回答No.4

答えはy=4+C/x (Cは定数)ではないですか? u=ax^2+bx+cとおいて解いてみました。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ありがとうございます。 自分でも今から計算してみます。 何かありましたら書き込んでいただければと思います。 補足があったらお礼欄に記入させていただきます。

  • 回答No.3

すみません、No.2の2行目は間違いです。正しくは (x/y)'+ 2(y'/y)'+ 2(y'/y)^2=0 です。そのあとは一緒です。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

両辺をy^2で割って変形すると、 (x/y)'+ (y'/y)'+ (y'/y)^2=0 となる。 y=u/xとおき整理すると u"-uu'+4u=0 となる。 あとは線形なんで自分でいけますね?

共感・感謝の気持ちを伝えよう!

  • 回答No.1

これは解がある問題ですか? それすらわからないなら、非線形微分方程式は9割方解けないので諦めるしかないです。 (シミュレーションと言う手は有ります)

共感・感謝の気持ちを伝えよう!

質問者からの補足

解があるので悩んでいます

関連するQ&A

  • 非線形常微分方程式

    以下の非線形の常微分方程式を考えています。 yはxに関する関数 y-xy'-2(y')^2-2yy"=0 あらゆる方法を試しましたが解が出ません・・・。 何かひらめきが必要な気がします。 ちなみに、これは非線形ですが、解が存在する問題です。 どなたか解法をよろしくお願い致します。

  • 微分方程式 線形 非線形

    前回の質問の続きです。 前回の質問内容:http://okwave.jp/qa/q7818206.html ラプラス方程式が、2階線形偏微分方程式、 ポアソン方程式が、2階非線形偏微分方程式であることは 理解できました。ありがとうございます。 微分方程式で参考書やインターネットにあった線形微分方程式と 非線形微分方程式を以下に示します。 線形微分方程式 (1)y”+y’-2x=0 (2)y’+xy=1 (3)(x-1)y''-xy'+y=0 非線形微分方程式 (1)(y”)^2+y’-2x=0 (2)x(y”’)^3+y’=3 (3)y・y’+xy=1 上記、線形/非線形の分類に間違いはあるでしょうか? 非線形微分方程式の(3)y・y’+xy=1は、なぜ非線形となるのでしょうか? y・y’+xy=1⇒y’+x=1/y⇒y’+x-1/y=0は線形ではないでしょうか? 線形微分方程式(2)y’+xy=1も、xy’+xy=1となると非線形になるの でしょうか? ご回答よろしくお願い致します。

  • 微分方程式 線形 非線形 その2

    前回の質問内容で、 y・y’+xy=1 が非線形微分方程式であることは理解できました。 >yy' は、y と y' が 1 次づつの積で { y,y',y'',y''',… } については 2 次、 >xy' は、{ y,y',y'',y''',… } に含まれるのが y だけで 1 次です。 ご回答頂いた内容を整理している際に、疑問に感じた点があったので再度 質問させて頂きます。 y’+xy=1 は線形微分方程式ですが、 y’+(x/y)=1も線形微分方程式でしょうか? (x/y)は、yを1次として考えて線形微分方程式なのでは と考えたのですが、正しいでしょうか? 1/yは非線形になるのでしょうか? 同様に、 1/y’+xy=1は非線形微分方程式となるのでしょうか? 1/y,1/y’が線形なのか非線形になるのかがわかりません。 ご回答よろしくお願い致します。

  • 常微分方程式の問題

    常微分方程式の問題でいくつか解けなかったところがあるので教えていただきたいです。 この章で扱っているのは 変数分離系・同時系・線形1階微分方程式・完全微分形・線形2階微分方程式(同次形)・線形2階微分方程式(非同次形) を扱っていました。 その内、一般解を求める以下の問題 (1)dy/dx=xe^-y (2)x(dy/dx)-y=1 (3)(2y-x^2)dx+(2x-y^2)dy=0 と 与えられた条件をそれぞれ満たす微分方程式の解を求める以下の問題 (1)dy/dx=y/x (x=1のときY-2) (5)y''+5y'+6y=0 (x=0のときy=0、y'=1) の問題が解くことができませんでした。 どなたか解法をわかりやすく教えていただけないでしょうか?

  • 1階線形微分方程式

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x

  • 1階常微分方程式で。。。

    最近独学で微分方程式を勉強していたんですけど、 1階常微分方程式の辺りで躓いてしまいました。。。 わからない問題は死ぬほどあるんですけど、 この三問の解法を教えてください<(_ _)> 他は…もう少し頑張ってみます頑張ってみます。 1)一般解を求めよ:y´=(x-1)y^2 2)次の初期値問題を解け:y´=2xy(1+y),y(0)=-1/2 3)一般解を求めよ:y´=(x+y)/(x-y)

  • 2階常微分方程式

    x*y''-y'=0 この微分方程式を解きたいのですが解法がわかりません・・・ y"の係数がx^2であればオイラーの微分方程式としてy=x^αを代入して解を得ることができますが この形ですとα=0となってしまい解を求めることができません。 このような定数係数以外の時の2階常微分方程式の解の求め方について説明をお願いします。

  • 2階線形微分方程式の置き換えについて質問です

    先日、2階線形微分方程式(未知関数y(x))の解法として、 u(x) = xy(x) …(a) としていた問題がありました。しかし、その問題集が現在見当たらず、どのような場合にこの置き換えが有効なのかがわかりません 手元にある常微分方程式に関する本を見ても載っていませんでした (a)の置き換えがどのような形の微分方程式に有効か教えていただきたいです また、(a)の置き換えが単なる私の思い違いの場合は、ご指摘をお願いします

  • 微分方程式

    y’-2/xy = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題を教えて下さい。 よろしくお願いします。

  • 微分方程式 線形 非線形 その4

    与えられた問題の微分方程式が線形なのか非線形なのかは 理解できました。 >y についての微分方程式の次数は、 >y についての(代数的な)次数ではなく、 >{y,y',y'',y''',…}についての次数を見ます。 >それが 1 次式なら、線型微分方程式です。 と教えて頂き理解できました。 問題として当たったことはないのですが、 ・(y^2)’+xy=1は非線形微分方程式という認識で正しいでしょうか?    ・(logy)'や(siny)'などを含む微分方程式は非線形微分方程式と言う   認識も正しいでしょうか? 以上、何度も申し訳ありませんがご回答よろしくお願い致します。