• ベストアンサー
  • 困ってます

微分方程式

y’-2/xy = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題を教えて下さい。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数70
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

与えられた方程式を次のようであるとします. y'-(2/x)y-xy^3=0 u=y^{-2}とおくと, u'=-2y^{-3}y'=-2y^{-4}yy'=-2u^2yy' y'=u'/(-2u^2y) ∴u'/(-2u^2y)-(2/x)y-xy^3=0 (-1/2)u'/u^2-(2/x)y^2-xy^4=0 (-1/2)u'/u^2-(2/x)(1/u)-x(1/u^2)=0 (☆)u'+(4/x)u+2x=0 まず,この同次形 u'+(4/x)u=0 の一般解を求める. u'/u=-4/x∴∫u'dx/u=-4∫dx/x,logu=-4log|x|+C,logu=log(e^C/x^4) u=e^C/x^4 e^C=Aとおくと u=A/x^4=Ax^{-4} そこで定数変化法によって u=A(x)x^{-4}とおくと, u'=A'x^{-4}+A(-4)x^{-5}=A'x^{-4}-4u/x ☆に代入すると A'x^{-4}-4u/x+(4/x)u+2x=0 A'x^{-4}+2x=0 A'=-2x^5 A(x)=B-x^6/3 ∴u=(B-x^6/3)x^{-4} ∴y=±√(1/u)=±x^2/√(B-x^6/3)(Bは定数)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • <微分方程式>

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題を教えて下さい。 よろしくお願いします。

  • 1階線形微分方程式

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x

  • 微分方程式

    dx/dt=a^2-x^2 (aは実数の定数) (1)この微分方程式は1階の線形同次・線形非同次・非線形のどれにあてはまるか。 (2)この微分方程式の一般解を変数分離法で求めよ。 考えたことは(1)は非線形だと思いますが、合っていますか? (2)はdx/(x^2-a^2)=-dtと変形し、両辺積分します。  すると、1/(2a)log(|x-a|/|x+a|) = -t + C このあとx=が分からないです。 教えてください。お願いします

  • 微分方程式

    微分方程式 dy/dx-2xy=2xy~2 について。 (1)z=1/yとするとき、z=z(x)が満たす微分方程式を求めよ (2)(1)で求めたzに対する微分方程式の一般解を求めよ (3)yの一般解および特殊解を求めよ という問題があります。 これは教科書にあるような、微分方程式の公式を用いて解くのでしょうか よく分からないので詳しく教えてください。

  • 微分方程式

    微分方程式 以下の方程式の解がわかりません。色々調べてはみたのですが。 どうやら1階の微分方程式に帰着できるようです。 xy''+y'=4x (1+x^2)y''+2xy'=2/x^3 大変お手数ですが、どなたかわかる方ご教授願います。 よろしくお願いします。

  • 微分方程式について

    2階線形同次微分方程式を解く場合、方程式が2実数解、重解、2虚数解のどれを持つかによって、一般解は異なります。 しかし、微分方程式をラプラス変換で解けば、一般解を求めるための公式は気にしなくともよいのでしょうか。

  • 解けませんこの微分方程式

    いつもお世話になっています。 独学でなんとか線形微分方程式や同次型まで理解しています。今 y'+(1/x)y+y^2-1/x^2=0 という方程式を解こうとしています。特殊解はとりあえず1/xが見つかりました。問題は一般解を求めるのですが、試しに最終的に求めたい 線形結合の解yをy=k+1/xとおいて(kが一般解です)代入し、 kとxの微分方程式を作りました。 果たしてここまであっているのかわからないのですが、ここから手が止まっています。また変数変換したりするのでしょうか。 わかる方詳しく教えていただけないでしょうか。お願いします。

  • 微分方程式

    微分方程式の x^2y''+xy'-y=0 や (1-x)y''+xy'-y=0 などのxが掛かっていて右辺が0である二階線形微分方程式の解き方がわかりません。 どなたか答えてもらえないでしょうか?

  • 非同次線形微分方程式の解

    非同次線形微分方程式の解は、 「同次線形微分方程式の一般解+特殊解」 だと思うのですが、このとき、 「【同次線形微分方程式の一般解】は、非同次線形微分方程式の解である。」と言えるのでしょうか?

  • 微分方程式についての質問です。

    微分方程式についての質問です。 問題.x^2-y^2+2xy*y'=0を解け。 上記の問題を同次形微分方程式の解き方で解くと、 x^2+y^2=Cx(Cは0でない定数) という一般解が求まりました。 ここで疑問なんですが、一般解を変形してy'を求めると y^2=Cx-x^2 y=√(Cx-x^2),-√(Cx-x^2) y'=(C-2x)/(2√(Cx-x^2)),-(C-2x)/(2√(Cx-x^2)) となるので、x=0,Cではy'が定義されないことになります。 この場合、一般解のxの定義域として「x=0,Cは除く」ということでいいのでしょうか? いろいろ考えると分からなくなってきました…