• 締切済み
  • すぐに回答を!

非線形常微分方程式

以下の非線形の常微分方程式を考えています。 yはxに関する関数 y-xy'-2(y')^2-2yy"=0 あらゆる方法を試しましたが解が出ません・・・。 何かひらめきが必要な気がします。 ちなみに、これは非線形ですが、解が存在する問題です。 どなたか解法をよろしくお願い致します。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • Ae610
  • ベストアンサー率25% (385/1500)

回答と言うわけではなく、単なる独り言だが・・・、 y-xy'-2(y')^2-2yy"=0 ではなくて y-xy'-2(y')^2+2yy"=0(又はy-xy'+2(y')^2-2yy"=0) だったりすると解けるのだが・・・!?

共感・感謝の気持ちを伝えよう!

質問者からの補足

そうですね。 しかし私は質問に記入した方程式を考えております。

関連するQ&A

  • 非線形常微分方程式

    以下の非線形の常微分方程式を考えています。 yはxに関する関数 y-xy'-2(y')^2-2yy"=0 あらゆる方法を試しましたが解が出ません・・・。 何かひらめきが必要な気がします。 どなたか解法をよろしくお願い致します。

  • 微分方程式 線形 非線形

    前回の質問の続きです。 前回の質問内容:http://okwave.jp/qa/q7818206.html ラプラス方程式が、2階線形偏微分方程式、 ポアソン方程式が、2階非線形偏微分方程式であることは 理解できました。ありがとうございます。 微分方程式で参考書やインターネットにあった線形微分方程式と 非線形微分方程式を以下に示します。 線形微分方程式 (1)y”+y’-2x=0 (2)y’+xy=1 (3)(x-1)y''-xy'+y=0 非線形微分方程式 (1)(y”)^2+y’-2x=0 (2)x(y”’)^3+y’=3 (3)y・y’+xy=1 上記、線形/非線形の分類に間違いはあるでしょうか? 非線形微分方程式の(3)y・y’+xy=1は、なぜ非線形となるのでしょうか? y・y’+xy=1⇒y’+x=1/y⇒y’+x-1/y=0は線形ではないでしょうか? 線形微分方程式(2)y’+xy=1も、xy’+xy=1となると非線形になるの でしょうか? ご回答よろしくお願い致します。

  • 微分方程式 線形 非線形 その2

    前回の質問内容で、 y・y’+xy=1 が非線形微分方程式であることは理解できました。 >yy' は、y と y' が 1 次づつの積で { y,y',y'',y''',… } については 2 次、 >xy' は、{ y,y',y'',y''',… } に含まれるのが y だけで 1 次です。 ご回答頂いた内容を整理している際に、疑問に感じた点があったので再度 質問させて頂きます。 y’+xy=1 は線形微分方程式ですが、 y’+(x/y)=1も線形微分方程式でしょうか? (x/y)は、yを1次として考えて線形微分方程式なのでは と考えたのですが、正しいでしょうか? 1/yは非線形になるのでしょうか? 同様に、 1/y’+xy=1は非線形微分方程式となるのでしょうか? 1/y,1/y’が線形なのか非線形になるのかがわかりません。 ご回答よろしくお願い致します。

  • 常微分方程式の問題

    常微分方程式の問題でいくつか解けなかったところがあるので教えていただきたいです。 この章で扱っているのは 変数分離系・同時系・線形1階微分方程式・完全微分形・線形2階微分方程式(同次形)・線形2階微分方程式(非同次形) を扱っていました。 その内、一般解を求める以下の問題 (1)dy/dx=xe^-y (2)x(dy/dx)-y=1 (3)(2y-x^2)dx+(2x-y^2)dy=0 と 与えられた条件をそれぞれ満たす微分方程式の解を求める以下の問題 (1)dy/dx=y/x (x=1のときY-2) (5)y''+5y'+6y=0 (x=0のときy=0、y'=1) の問題が解くことができませんでした。 どなたか解法をわかりやすく教えていただけないでしょうか?

  • 1階線形微分方程式

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x

  • 1階常微分方程式で。。。

    最近独学で微分方程式を勉強していたんですけど、 1階常微分方程式の辺りで躓いてしまいました。。。 わからない問題は死ぬほどあるんですけど、 この三問の解法を教えてください<(_ _)> 他は…もう少し頑張ってみます頑張ってみます。 1)一般解を求めよ:y´=(x-1)y^2 2)次の初期値問題を解け:y´=2xy(1+y),y(0)=-1/2 3)一般解を求めよ:y´=(x+y)/(x-y)

  • 2階常微分方程式

    x*y''-y'=0 この微分方程式を解きたいのですが解法がわかりません・・・ y"の係数がx^2であればオイラーの微分方程式としてy=x^αを代入して解を得ることができますが この形ですとα=0となってしまい解を求めることができません。 このような定数係数以外の時の2階常微分方程式の解の求め方について説明をお願いします。

  • 2階線形微分方程式の置き換えについて質問です

    先日、2階線形微分方程式(未知関数y(x))の解法として、 u(x) = xy(x) …(a) としていた問題がありました。しかし、その問題集が現在見当たらず、どのような場合にこの置き換えが有効なのかがわかりません 手元にある常微分方程式に関する本を見ても載っていませんでした (a)の置き換えがどのような形の微分方程式に有効か教えていただきたいです また、(a)の置き換えが単なる私の思い違いの場合は、ご指摘をお願いします

  • 微分方程式

    y’-2/xy = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題を教えて下さい。 よろしくお願いします。

  • 2階線形常微分方程式の解は、なぜ。

    2階線形常微分方程式は、y=exp(λx)と仮定して解くと、解を2つ求めることができますが、その各々が解であることは明らかですが、なぜその各々の解の線形結合も解になるのでしょうか?また、その各々の線形結合は、絶対に解になるのでしょうか?それとも条件付きでしょうか?