- ベストアンサー
- 困ってます
正規部分群の特性部分群が正規部分群である証明
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- kabaokaba
- ベストアンサー率51% (724/1416)
定義からほとんど自明ではなかろうか・・・・ Bの任意の元bとGの任意の元gをとって gbg^{1}がBの元であることを示せばよい. Gの任意の元gに対してGの内部自己同型f(g)を f(g)(x)=gxg^{-1} で定める. AがGの正規部分群であるのだからf(g)(A)=A. よってf(g)はAの自己同型. さらに,BはAの特性部分群なのだから f(g)(B)=B つまり Bの任意の元bとgに対して gbg^{-1}はBの元 よって BはGの正規部分群.
その他の回答 (1)
- 回答No.2
- graphaffine
- ベストアンサー率23% (55/232)
特性部分群の意味を知っていたら、自明だと思いますが。 正規部分群は全ての内部自己同型について不変な群。 特性部分群は全ての自己同型について不変な群。 当然ながら、内部自己同型は自己同型の1種ですから、 全ての自己同型について不変ならば、全ての内部自己同型について不変です。 従って、特性部分群は正規部分群です。
質問者からのお礼
ありがとうございます。 なぜ分からなかったのか自分でも分かりません。
関連するQ&A
- 余剰群が正規部分群でなければいけない証明
余剰群の演算において 群Gの部分群Kでa,b ∈Gの時 Ka*Kb=Kab が成り立つ時、 部分群Kは正規部分群である。 というのを証明したいのですが、 一つのやり方として、 k,k'∈K Ka=Ka*K1=Ka*Kk=Kak と出来き、 ka=k'ak'' =>k'^-1k=ak'a^-1∈K となることにより、Kは正規部分群であると言える、という証明'が記述してあるのは拝見したんですが、 もう一つの証明の仕方として、 g∈aK Kg=Kak'=Ka*Kk'=Ka => kg=k'a g=k^-1k'a∈Ka から aK⊆Ka が示せます。 そして Ka⊆aK を示すことが出来れば、Ka=aKとなり、 正規部分群の定義 aK=Kaとして、Kが正規部分群と言えるとなります。 ですが、 どうやってKa⊆aKを証明すればいいのか分かりません。。 どなたか分かる方よろしくお願いします。
- ベストアンサー
- 数学・算数
- 正規部分群の基本性質の証明について。
お世話になります。よろしくお願いします。 正規部分群の基本性質の証明問題です。 問題________________ Hを群Gの部分群とする時 『∀a,b∈G,aH=bH⇔Ha=Hb』 ならば 『∀a∈G,aH=Ha』 を証明せよ。 ___________________ ヒントだけでもよいのでよろしくお願い致します。
- ベストアンサー
- 数学・算数
- 部分群であることの証明
部分群であることの証明 Gを群、Hをその部分集合とし、a,b∈Gに対し、「a~b⇔ab^(-1)∈H」なる~ が同値関係であるとする。このとき、HはGの部分群であることを証明してほしいです。 部分群であることを証明するには、(1)結合法則が成り立つこと(2)単位元の存在(3)逆元の存在が言えればいいこと、 同値関係の定義については理解しています。 ですが証明文を書くことができず、困っています。 回答よろしくお願いします。
- ベストアンサー
- 数学・算数
- 正規部分群の基本性質の証明について。
またお世話になります。よろしくお願いします。 正規部分群の基本性質の証明問題です。 問題___________________________ 「∀a,b,c,d∈G,aH=bH,cH=dH→acH=bdH」 ならば 「∀a,b∈G,aH=bH⇔Ha=Hb」 _____________________________ 方針、ヒントだけでもよいのでよろしくお願い致します。
- ベストアンサー
- 数学・算数
- 位数45の群が位数9の正規部分群をもつことの証明はどうすればいいのでし
位数45の群が位数9の正規部分群をもつことの証明はどうすればいいのでしょうか? シローの定理が必要だとおもうのですが。。。 <シローの定理> (1)p^r | |G| ==> Gは位数p^rの部分群をもつ よってシローp-部分群は存在する (2)H: Gのp-部分群とすれば Hを含むシローp-部分群が存在する (3)シローp-部分群は互いにG共役 (4)シローp-部分群の個数は 1+k*p の形 (k∈Z,k≧0)
- ベストアンサー
- 数学・算数
- 加法群は半直積の正規部分群であることについて
GをGL(n,R)の部分群とし、G×R^n上に (A,a)・(B,b):=(AB,a+Ab) という演算・を定め、これをGとR^nの半直積とし、G∝R^nと書くことにします。 このとき、加法群(R^n,+)はG∝R^nの正規部分群であるといえるのでしょうか? よろしくおねがいします。
- ベストアンサー
- 数学・算数
- 代数学について(正規部分群)
問:群Gの中心ZはGの正規部分群であることを示せ。 G の任意の元 a に対して a-1Na ⊆ N が成り立つ 群Gの元aに共役な元aだけであるとき、G=C(a)となり、aは群Gの任意の元と可換である。このような元の集合をGの中心という という部分はかいてあったのですが、いまいち言葉の意味が判りませんでしたので、 ご回答をお願いします。
- ベストアンサー
- 数学・算数
質問者からのお礼
ありがとうございます。 確かに自明ですね。