• ベストアンサー

位数45の群が位数9の正規部分群をもつことの証明はどうすればいいのでし

位数45の群が位数9の正規部分群をもつことの証明はどうすればいいのでしょうか? シローの定理が必要だとおもうのですが。。。 <シローの定理> (1)p^r | |G| ==> Gは位数p^rの部分群をもつ よってシローp-部分群は存在する (2)H: Gのp-部分群とすれば Hを含むシローp-部分群が存在する (3)シローp-部分群は互いにG共役 (4)シローp-部分群の個数は 1+k*p の形 (k∈Z,k≧0)

質問者が選んだベストアンサー

  • ベストアンサー
  • yoikagari
  • ベストアンサー率50% (87/171)
回答No.1

位数45の群をG、Gの位数9の部分群をPとする。 ><シローの定理> >(4)シローp-部分群の個数は1+k*p の形 (k∈Z,k≧0) がポイント しかもシローp-部分群の個数は|G:P|だから、|G|=45 の約数である。 45の約数1,3,5,9,15,45のうち3で割ると1余るのは1のみである したがってGのシロー9-部分群の個数は1個である。 Gから元kを任意にとる。 群kPk^(-1)を考えるとkPk^(-1)の位数は9である。 ところが、のシロー9-部分群は1個だからkPk^(-1)=P でなければならない。 したがってPはGの正規部分群である。

関連するQ&A

  • Pが群Gのシローp-部分群であるとき Pが唯一のシローp-部分群である

    Pが群Gのシローp-部分群であるとき Pが唯一のシローp-部分群であることと PがGの正規部分群であることが同値であることを シローの定理を使って示すにはどうすればいいのでしょうか? <シローの定理> (1)p^r | |G| ==> Gは位数p^rの部分群をもつ よってシローp-部分群は存在する (2)H: Gのp-部分群とすれば Hを含むシローp-部分群が存在する (3)シローp-部分群は互いにG-共役 (4)シローp-部分群の個数は 1+k*p の形 (k∈Z,k≧0)

  • 位数6の群を分類したいです。

    Gを位数が6の群とする G≅Z/6Z or S3 のどちらかに同型になることを示したいのですが、 シローの定理からP3:3-Sylow部分群 s3:P3の個数 P2:2-Sylow部分群 s2:P2の個数 とすると、シローの定理からs3=1、s2=1,3となり、 (1)s2=1の時は、G≅Z/2Z×Z/3Z≅Z/6Z ということは分かったのですが、 (2)s2=3の時はG≅S3になると思うのですが、これをどう示したらよいかが分かりません。 教えていただけませんですか?

  • 代数学の問題です

    G:群 |G|=45に対し、G=S3×S5となることを示せ。 S3:シロ―3部分郡 S5:シロ―5部分郡 シローの定理が必要だとおもうのですが。。。 <シローの定理> (1)p^r | |G| ==> Gは位数p^rの部分群をもつ よってシローp-部分群は存在する (2)H: Gのp-部分群とすれば Hを含むシローp-部分群が存在する (3)シローp-部分群は互いにG共役 (4)シローp-部分群の個数は 1+k*p の形 (k∈Z,k≧0) よろしくお願いします。

  • 交代群A4が位数の部分群を持たないことについて

    交代群A4が位数6の部分群を持たないことはどうやって示せばよいでしょうか? ヒント: もし位数の部分群を持つとすると,それはA4の正規部分群でなければならない. しかしA4の共役類は1,3,4,4個の元からなるから,位数の部分群は存在しない. ヒントを見てもわかりません.まず位数の部分群を持つとすると,それはA4の正規部分群でなければならないという理由からわかりません. この流れで,証明を書いていただけると助かります. よろしく願い致します.

  • 位数素数と部分群の数について

    pを素数とし,Gを位数pの群とする. このときG×Gの部分群の数を求めよ. といった問題について教えてください. Gは位数pの群なので,GはZ/pZと同型になり,G×GはZ/pZ×Z/pZと同型になるので,Z/pZ×Z/pZの部分群の数を求めればいいと思うのですがそれが求められません. よろしくお願いします.

  • 乗群の位数とラグランジェの定理

    (mod p)の剰余類で乗群G*をつくるとき,(pは素数) 0を含む剰余類は除くので,|G*|=p-1かと思います. a ∈ G*で,巡回部分群Hを生成すれば, H=G*であることも確認できます. ただ,ここでどうしてもわからないことがあります. G*の位数も,Hの位数もp-1で,-1されるために一般に素数にはなりません. ラグランジェの定理から位数が素数の有限群が真部分群を持たないことがわかりますが, G*の位数は,p-1で素数にならないため,真部分群を持ってもよさそうな気がします. どこに間違いがあるのでしょうか?

  • 位数が素数の累乗である群

    位数が素数の累乗p^nである有限なアーベル群Gの真部分群Hについて考えます。 どのHをとっても、その位数がp^nより小さくなるようなGは存在しますか? もし存在するようでしたら、具体例を挙げてください。

  • 代数学(pシロー群)について

    問:NをGの正規部分群、PをGの一つのpシロー群とすると、NP/NはG/Nのpシロー群であることを示せ。 G/N=(Na|a∈H)について、(Na)(Nb)=N(ab)と定義すれば、この積に対して群をつくる。 最高べきの位数の部分群を素であることを示すとか書いてありましたが、よくわかりませんでした。 ご回答をお願いします。

  • Sylowの定理と位数14の群

    G:位数14の群 N:Gの7-Sylow部分群 H:Gの2-Sylow部分群 とし,写像f:H→Aut(N)を f(h)=(n↦hnh^-1) で定める. このとき, (1)Imf={e}⇒Gは巡回群 (2)fが単射⇒Gは二面体群と同型 であることを示せという問題なのですが,以下のように示しました. (∵) Sylowの定理より,Gの7-Sylow部分群の個数は1なので,NはGの正規部分群である.またN,Hの位数はそれぞれ7,2なのでともに巡回群となる.よってN,Hの生成元をそれぞれa,bとすると,a^7=e,b^2=e.一方,N∩Hの位数は2と7の公約数であることから1.ゆえにN∩H={e}.したがって G=NH={a^i b^j | a^7=e,b^2=e} (Gの任意の元はN,Hの元で一意に表せる) また,NはGの正規部分群であることから,ある整数mが存在して,bab^(-1)=a^mとなる.ここで, (a^m)^m=(bab^(-1))^m=b(a^m)b^(-1)=(b^2)a(b^(-2))=a すなわち,a^(m^2-1)=eとなるので,m^2-1は7で割り切れる.ゆえにある整数lが存在して, m^2-1=(m+1)(m-1)=7l と書けるので,m=7l±1. (1) m=7l+1のとき bab^(-1)=a^m=a^(7l+1)=a ∴ab=ba よってGはN,Hで直積分解でき, G≒N×H≒Z/14Z (≒は同型の意) ゆえにGは巡回群. (2) m=7l-1のとき bab^(-1)=a^m=a^(7l-1)=a^(-1) よってGは二面体群と同型. (証明終) こんな感じで(1),(2)を一気に示したのですが,(1),(2)の仮定を一切使っておりません.(1)については別個に仮定を使って示せましたが,(2)はどこで仮定を使ってよいかわかりませんでした. ご教示願います.

  • 一問でもいいので分かる方解答お願いします

    (1)pを素数とし、nを正整数とする 1.位数がp^nの群の中心Z(G)の位数は、p以上であることを示せ 2.位数がp^nの群は指数がpの正規部分群を持つことを示せ (2)S_6のシロー3・群は何か答えよ (2)に関してはS_6のシロー3・群は、位数が3^2の部分群としか分からなかったのですが、ほかにどのように解答すればよいですか?