• 締切済み
  • すぐに回答を!

群論について(部分群)

群Gが正規部分群Nと、部分群Hを持つとします。 このとき、HNはGの部分群となり、NはHNの正規部分群になるみたいなのですが、これは何故なのでしょうか? よろしくお願います。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

定義に従えば、誰でも確かめることができるはずです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 代数学の、正規部分群の問題を教えて下さい。

    Gを群、HをGの部分群、NをGの正規部分群とする。 (1)NはHN:={hn|h∈H,n∈N}の正規部分群になっている事を示しめしなさい。 (2)剰余群HN/NとH/(H∩N)は同型である事を示しなさい。 という問題です。 お願いいたします。

  • 群論

    『群Gの位数は,ある部分群Hの正規化群N(H)の位数と,その部分群の共役類の位数(位数をc(H)とする) (その部分群に共役な部分群が何個あるか)の積に等しい』という |G|=|N(H)|*|C(H)|の証明はどう考えていけばいいのでしょうか。

  • 群論です

    Gを群、Hをその指数有限な部分群とする。Hに含まれるGの指数有限な正規部分群Nが存在することを示せ。  全く分かりません。どなたか教えてください。

  • 群論「可解群」について

    Gを群とする. 「Gの正規部分群Nに対し,NとG/Nがともに可解群ならば,Gもまた可解群である.」 この証明なのですが,途中がわかりません. (∵) G/Nは可解群だから,G/Nの正規列 G/N=G_0/N⊃G_1/N⊃…⊃G_m/N=N/N であって,同型定理より,商群 (G_(i-1)/N)/(G_i/N)≒G_(i-1)/Gi (≒は同型の記号としてください) がアーベル群となるものが存在する. このとき「G_iはG_(i-1)の正規部分群」であることに注意する.…(?) また,Nが可解群だから,Nの正規列 N=G_m⊃G_(m+1)⊃…⊃G_r={e} であって,商群 G_(j-1)/G_j がアーベル群となるものが存在する.このとき, G=G_0⊃G_1⊃…⊃G_m=N⊃G_(m+1)⊃…⊃G_r={e} はGの正規列であって,その商群はアーベル群よりなる. よってGは可解群である. Q.E.D とあったのですが,途中の(?)の部分がわかりません. なぜ「G_iはG_(i-1)の正規部分群」となるのでしょうか? 詳しい方お願いします.

  • 群論の問題です

    (1)G, G′ を群,H を G の正規部分群とする.f : G → G′ が準同型写像のとき f(H)は G′ の正規部分群か否か? 正規部分群ならば証明し,そうでないならば反例をあげよ. (2) n を正整数とするとき,Aut(Z/nZ) ≅ (Z/nZ)^x を示せ. この二問がわかりません。教えていただければ幸いです。

  • 閉部分群

    Gをリー群,HをGの連結リー部分群とする。 N(H)={g∈G|gHg^-1 = H}はGの閉部分群であることを示せ Lie 群 の定義より,N(H) は位相的には "閉" 従って,p,q ∈ N(H) に対して,p・q^(-1) ∈ N(H) を示せばよいと思うのですが示し方がわかりません><  

  • 正規部分群

    NをGの部分群、GにおけるNの指数が2であるときNは正規部分群であることを示せ。 これはどうやって導けばよいでしょうか?

  • 群論の交換子群について

    (問題) Gを群,HをGの部分群とする.また,[G,G]をGの交換子群とするとき, [G,G]⊂H⇔H\GかつG/Hがアーベル群 となることを示せ. ここで,H\GはHがGの正規部分群であることを表し(記号が環境依存文字だったので\で代用させていただきました),G/HはHによる商群とする. (質問) この証明なのですが,H\Gは証明できました,しかし,G/Hがアーベル群であることが示せません. 手持ちの参考書には,任意のGの元a,bに対して, {a^(-1)b^(-1)ab}H=H・・・(1) であるから, (aH)(bH)=abH=ba{a^(-1)b^(-1)ab}H=baH=(bH)(aH) よって,G/Hはアーベル群である. とあるのですが,(1)が示せません. (1)が示せれば後は簡単なのですが,ここが理解できないので困っています. a^(-1)およびb^(-1)はそれぞれa,bの逆元です. どなたか群論に詳しい方よろしくお願いします.

  • Hを有限群Gの部分群・・・Nの位数lNlと指数

    Hを有限群Gの部分群、NをGの正規部分群とする。 Nの位数lNlと指数(G:N)とが互いに素、lHlがlNlの約数とする。 このときH(Nであることを証明せよ。 まったくわかりません。 ヒントでもいいのでよろしくお願いします!

  • 部分群について

    群Gの部分群Nについて、次の4条件は同値である 1 NはGの正規部分群である 2 Gの任意の元aに対して、(a^(-1))Na⊆N である 3 Gの任意の元aに対して、Na=aN である 4 Gの任意の元aに対して、Na⊆aN である ______________________________________ ランダムで 1⇔3 や 2⇔3 などは証明できました。 次に 3⇔4 の証明で躓いてしまいました。 3⇒4 は明らかだと思うのですが、問題は 4⇒3 です。。。 すみませんが、知恵を貸してください。 よろしくお願いします。