• 締切済み

Hを有限群Gの部分群・・・Nの位数lNlと指数

Hを有限群Gの部分群、NをGの正規部分群とする。 Nの位数lNlと指数(G:N)とが互いに素、lHlがlNlの約数とする。 このときH(Nであることを証明せよ。 まったくわかりません。 ヒントでもいいのでよろしくお願いします!

みんなの回答

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.2

任意のa∈Hに対して G/Nの元aNから生成される巡回群を(aN)とすると |(aN)|は(G:N)の約数で|H|の約数だから (G:N)と|N|の公約数となる (G:N)と|N|は互いに素だから →|(aN)|=1 →aN=N →a∈N ↓ ∴H⊂N

  • koko_u_u
  • ベストアンサー率18% (216/1139)
回答No.1

> ヒントでもいいのでよろしくお願いします! 何でもいいから、いろいろ試して補足にどうぞ。

関連するQ&A

  • G,G'を有限群とし,ψ:G→G'を準同型とするとき

    G,G'を有限群とし,ψ:G→G'を準同型とするとき Im ψの位数がG,G'の位数の約数となることを証明せよ. また,G,G'の位数が互いに素なとき,GからG'への準同型写像をすべて求めよ. という問題なのですが,Im ψがG'の部分群であり,ラグランジュの定理より Im ψの位数がG'の位数となることはわかるのですが,他がわかりませんどなたか解説お願いします.

  • 可換群Gの二つの元a,bのそれぞれの位数m,nが

    可換群Gの二つの元a,bのそれぞれの位数m,nが 互いに素ならば、abの位数はmnである。 この証明が分からないです。 あと、位数m,nが互いに素なようになる可換群はどのようなものがあるでしょうか? 例えばmodの世界において考えると、 mod nの時、位数はn-1の約数になるので互いに素にはならないと思うのです。 そもそもが間違えているかもしれません。 優しく教えていただければ幸いです。 よろしくお願いします。

  • 位数45の群が位数9の正規部分群をもつことの証明はどうすればいいのでし

    位数45の群が位数9の正規部分群をもつことの証明はどうすればいいのでしょうか? シローの定理が必要だとおもうのですが。。。 <シローの定理> (1)p^r | |G| ==> Gは位数p^rの部分群をもつ よってシローp-部分群は存在する (2)H: Gのp-部分群とすれば Hを含むシローp-部分群が存在する (3)シローp-部分群は互いにG共役 (4)シローp-部分群の個数は 1+k*p の形 (k∈Z,k≧0)

  • 交代群A4が位数の部分群を持たないことについて

    交代群A4が位数6の部分群を持たないことはどうやって示せばよいでしょうか? ヒント: もし位数の部分群を持つとすると,それはA4の正規部分群でなければならない. しかしA4の共役類は1,3,4,4個の元からなるから,位数の部分群は存在しない. ヒントを見てもわかりません.まず位数の部分群を持つとすると,それはA4の正規部分群でなければならないという理由からわかりません. この流れで,証明を書いていただけると助かります. よろしく願い致します.

  • 位数が素数の累乗である群

    位数が素数の累乗p^nである有限なアーベル群Gの真部分群Hについて考えます。 どのHをとっても、その位数がp^nより小さくなるようなGは存在しますか? もし存在するようでしたら、具体例を挙げてください。

  • 有限位数の元の積

    ふと疑問に思ったのですが、群において有限位数の元の積もまた有限になるのでしょうか。 つまり、Gを群、a,bを位数が有限のGの元とする時、abの位数も有限になるのでしょうか。 問題は単純なのですが、単純であるがゆえ証明が難しそうです。反例も思い付きません。 どなたかよいお考えがあれば教えていただきたいです。

  • 乗群の位数とラグランジェの定理

    (mod p)の剰余類で乗群G*をつくるとき,(pは素数) 0を含む剰余類は除くので,|G*|=p-1かと思います. a ∈ G*で,巡回部分群Hを生成すれば, H=G*であることも確認できます. ただ,ここでどうしてもわからないことがあります. G*の位数も,Hの位数もp-1で,-1されるために一般に素数にはなりません. ラグランジェの定理から位数が素数の有限群が真部分群を持たないことがわかりますが, G*の位数は,p-1で素数にならないため,真部分群を持ってもよさそうな気がします. どこに間違いがあるのでしょうか?

  • 任意の有限群は、適当な置換群 Sn(N) の部分群?

    Wikipedia のどこかで「任意の有限群は適当な置換群 Sn(N) の部分群である」ことが 20 世紀の終わりごろ証明されたと書いてあるのを見た記憶があります。でも、英語だっ たか、日本語だったかも記憶がありません。何度も検索しなおしたのですが、そのページ が見つかりません。 私の直感は掲題の命題が成り立つとも言っています。でも、こんな凄まじい結果が数学の 教科書や web ページに書いてないのも変です。私の認識に、何らかの誤りがありそうで す。以下のことについて教えてもらえますでしょうか。 1 「任意の有限群は適当な置換群 Sn(N) の部分群である」の証明があるか否か。 1-1 あるのならば、それを解説してある web ページ、 1-2 無いのならば、その反例。 2 より狭めて「位数 N の有限群は置換群 Sn(N) の部分群である」が言えそうに思えます。   でも反例もありそうにも思えます。この証明があるか否か。 2-1 あるのならば、それを解説してある web ページ、 2-2 無いのならば、その反例。 以上、詳しい方、よろしくお願いします。

  • Sylowの定理と位数14の群

    G:位数14の群 N:Gの7-Sylow部分群 H:Gの2-Sylow部分群 とし,写像f:H→Aut(N)を f(h)=(n↦hnh^-1) で定める. このとき, (1)Imf={e}⇒Gは巡回群 (2)fが単射⇒Gは二面体群と同型 であることを示せという問題なのですが,以下のように示しました. (∵) Sylowの定理より,Gの7-Sylow部分群の個数は1なので,NはGの正規部分群である.またN,Hの位数はそれぞれ7,2なのでともに巡回群となる.よってN,Hの生成元をそれぞれa,bとすると,a^7=e,b^2=e.一方,N∩Hの位数は2と7の公約数であることから1.ゆえにN∩H={e}.したがって G=NH={a^i b^j | a^7=e,b^2=e} (Gの任意の元はN,Hの元で一意に表せる) また,NはGの正規部分群であることから,ある整数mが存在して,bab^(-1)=a^mとなる.ここで, (a^m)^m=(bab^(-1))^m=b(a^m)b^(-1)=(b^2)a(b^(-2))=a すなわち,a^(m^2-1)=eとなるので,m^2-1は7で割り切れる.ゆえにある整数lが存在して, m^2-1=(m+1)(m-1)=7l と書けるので,m=7l±1. (1) m=7l+1のとき bab^(-1)=a^m=a^(7l+1)=a ∴ab=ba よってGはN,Hで直積分解でき, G≒N×H≒Z/14Z (≒は同型の意) ゆえにGは巡回群. (2) m=7l-1のとき bab^(-1)=a^m=a^(7l-1)=a^(-1) よってGは二面体群と同型. (証明終) こんな感じで(1),(2)を一気に示したのですが,(1),(2)の仮定を一切使っておりません.(1)については別個に仮定を使って示せましたが,(2)はどこで仮定を使ってよいかわかりませんでした. ご教示願います.

  • 代数学 群の剰余群 指数について

    群の剰余群や指数について今勉強していて、持っている参考書にあまり載っていないので、ネットでいろいろ調べていたんですが、 「Gが群でHがその部分群の時、指数[G:H]が2ならHは正規部分群になる」のが当たり前のように書いてあるのですが、これがわかりません。 正規部分群はxH=Hxが成立することから導くのでしょうか? 説明がつたなくてすいません。教えてください。よろしくおねがいします。