• 締切済み
  • 困ってます

行列の要素にベクトルの成分をいれる?

ベクトルの成分を行列にするというのは習いました。 では、ベクトルを並べて 例えば 2次元のベクトルA,BとベクトルC,Dがあり、それぞれを並べて ( (2,1) , (3.5) ) と ( (2,4), (1.6) ) というようにして、A,Cの内積、B,Dの内積が入った行列を導出するようなことはできますか? (A,B)・(C,D) = (A・C , B・D) 仮にベクトルの成分行列を要素に持つ行列があると仮定して、(C,D)行列を転置すれば行列の 掛け算はできますが、内積を行うようなこうはできるのでしょうか。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数190
  • ありがとう数0

みんなの回答

  • 回答No.3
  • alice_44
  • ベストアンサー率44% (2109/4758)

列ベクトルを成分とする行列を考えることはかまいませんが、 行列積を考えるときに使う成分の積、例えば A B C D の二乗の (1,1) 成分を A・A+B・C とする「・」が 内積であっては、 それは、「ベクトルを成分とする行列積」とは呼べません。 A B C D の二乗が、ベクトルを成分とする 2×2 になっていない でしょう? 「ベクトルを成分とする行列」ではなくて、単にそういう何か が定義されたということになります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 直交行列について

     Uが直交行列、その転置行列が t[U] のとき   t[U]U = E となるのはよくわかるのですが   Ut[U] = E となる理由がよくわかりません。行列の積の定義から当たり前のことではあるのですが Ut[U] の成分は正規直交基底ではないベクトル同士の内積になってしまいます。

  • 線形代数の行列式と内積の問題です

    nベクトルとmベクトルの内積を〈n,m〉で表す。a∈R^nとする。 n次正方行列A=[a1 a2 a3 ・・・ an]に対して、 det([〈ai aj〉]n×n)=( det(A) )^2 を示せ。 [〈ai aj〉]n×nは、aijを(i,j)成分するn×n行列です。 転置を使って内積を表して証明するらしいのですが、方法がいまいち分かりません。 よろしくお願いします。

  • 直交行列について

    A~A=AA~=Iを満たすAは直交行列(~は転置 n次元の正規直交基底をn個並べたものは直交行列 とあります 正規直交基底a1,a2,,,,anを並べた行列をAとすると A~Aは各ベクトルの内積を考えることになって ノルムは1 直交するから0→単位行列だってのはわかりますが AA~は内積を考えてるわけではないです でも計算してみると内積っぽい形をしているわけで y1をa1,a2,a3...anの第一成分を並べたベクトル ynをa1,a2,a3...anの第n成分を並べたベクトル と見れば AA~はyi(i=1,2,3...n) の各内積を考えることになり これも単位行列になるんだから結局yiも正規直交基底になっています これはなんでですか? A~A=AA~=Iだからで片付けられるとなんだか面白くないので 他に証明のやりかたあったら教えてください

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「そ~いうもの」を定義すればできます.

共感・感謝の気持ちを伝えよう!

  • 回答No.1

とりあえず内積の表記法と、行ベクトルか列ベクトルか行列かをはっきりさせてください。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ベクトルの成分は列ベクトルです。 それを普通の行列の要素に入れています。記述量が増えるとおもい1×2の行列で書きましたが 正方行列で考えています。(書き忘れていました。すみません。) なので列ベクトルをそれぞれ A = (2,1)' B = (3,5)' C = (2,4)' D = (1,6)' と定義して (A,B)^2 (C,D) を計算した場合、結果はそれぞれの要素で内積をとった値になるのかな?という質問です。 ですが、そもそも列ベクトルを行列の中にいれて計算ができるのかがわからなかったので それがまずできるのかという質問でした。

関連するQ&A

  • 行列のノルム

    以下、xはn次元ベクトル、A=(a(i,j))はn×n行列とします。 ■||x||_2 = √{Σ_[j=1~n](x_j)^2} (ユークリッドノルム) ※x_jは、xの第j成分です。 このノルムを採用したとき、行列Aのノルムは以下のように定義することが出来る。 ・||A||_2 = MAX_[x]{||Ax||_2/||x||_2} この具体的な表現は以下で与えられる、らしいのですが…。 ・||A||_2 = MAX_[k]{√(μ_k)} (μ_kは、BをAの転置行列として、BAの固有値。) 本を読んでも、「簡単に導出できるので試みられたい。」とかしか書かれておらず、困っています。どうやって導出するのでしょうか?僕には簡単に導出できません。 また、 ■||x||_∞ = MAX_[k]{|x_k|}  ※x_kは、ベクトルxの第k成分。 このノルムを採用したとき、行列Aのノルムを ・||A||_∞ = MAX_[x]{||Ax||_∞/||x||_∞} と定義できて、この具体的な表現は、 ・MAX_[i]{Σ_[j=1~n]|a(i,j)|} で与えられるらしいのですが、本を読んでも、これも証明が省かれています。 ||A||_1についてはきちんと証明が載っているのですが…。 どちらか片方ずつでも、おねがいします。

  • 行列の積 内積 の関係について

    行列の積 内積 の関係について 行列の積と内積は同じであると説明があったのですが、 よく分かりません・・・ 例えば、A=(3、-2,1),B=(4,6,7)のベクトルの内積は A・B=(3×4)+(-2×6)+(1×7)=7となるのですが、 行列の積は(1行3列)×(1行3列)で計算できません。 どちらかのベクトルを転置化すれば計算できるのですが・・・ 列ベクトルや行ベクトルは転置しても同じベクトルなのでOKと言う事でしょうか? 内積の演算結果はスカラー(数値)で、行列の積の演算結果は 行列と認識しているのですがこの認識は誤りでしょうか? 列ベクトルや行ベクトルの積の場合はスカラーとなるのでしょうか? A=(3、-2,1),B=(4,6,7)において、ベクトルBを転置化してtBとすれば A×tB=(7)となります。これはスカラーとなりますでしょうか? (追加質問) また、以前ノルムに関して質問させて頂きました。 ご回答頂いた内容で大凡理解できたのですが、追加で一点だけ質問させて下さい。 VのベクトルAに対して、ノルムは ||A||=√(A・A)とされますが、これを||A||=√(A^2)と表記するのはおかしいのでしょうか?

  • 行列の問題です。

    行列の問題です。 A^tはAの転置行列 R^nの2つのベクトル x^t=(x_1,..,x_n) y^t=(y_1,..,y_n) に対して内積<x,y>を Σ_{i=1&#65374;n}x_iy_i で定義する。 Aをn×n実交代行列とする。 Bをすべての固有値が正となる実対称n×n行列とする。 (1)任意のベクトルx∈R^nに対して <Ax,x>=0を示せ。 (2)任意のベクトルx∈R^nに対して <Bx,x>≧0であり、 統合はx=0のときに限ることを示せ。 (3)A+Bは正則行列となることを示せ。 よろしくお願いします。

  • 逆行列

    逆行列の証明です。 わかる方、教えてください。 n次元のベクトル、x_1~x_k (1≦k≦n)は1次独立であると仮定したとき、(g(αβ))=x_α ・ x_β (注…xは太字で表していませんがベクトルなので、右辺はもちろん内積です。ちなみにここでの添字α,βはベクトルの要素を表すのではなく、ベクトルの番号を表します) を(α,β)要素とするようなk次の正方行列G=(g(αβ))を考える。 このとき、Gの逆行列G(-1)=(g(αβ))(-1)が必ず存在することを証明してください。 ーーーーーー おそらく行列式を用いて証明するのでしょうが、はじめの1次独立という仮定をうまく利用できません。2次形式を用いてみたら?というアドバイスもいただいたのですが、こっちのほうがもっと手付かずです。 どなたかわかる方、書き表し方が見にくくてすみませんが教えてください。 あと、(g(αβ))(-1)は(g(αβ))の逆行列です。

  • 行列 行ベクトル 列ベクトル について

    行列は見方を変えるとベクトルの集まりだと考える事ができる と思います。 質問なのですが、 X=(x1,x2) Y=(y1,y2) というベクトルを行列として見ると、 (x1 x2) (y1 y2) のように表されると思います。 ここで質問なのですが、 行列は、行ベクトルを縦に並べたもの、又は列ベクトル を横に並べたものと説明がありました。 列ベクトルとはXベクトルを (x1) (x2) と表したベクトルだと理解しています。 テキストにもこのように記載されています。 列ベクトルを横に並べたものとは、 (x1 y1) (x2 y2) となって上の行列と違います。 それとも、列ベクトルとは、 (x1) (y1) の事ですか? (x1) (y1) ってどんなベクトルなんでしょうか? 与えられた(仮定した)ベクトルは、 X=(x1,x2) Y=(y1,y2) ですよね・・・ 良くわかりません・・・ 列ベクトルを横に並べたものと言う説明がおかしいの でしょうか? 列ベクトルとはどのようなものか教えて頂けないでしょうか? 行列の積を考える場合、それぞれの型を考えて行列を作ります。 (X Y)(x1 x2) (y1 y2) や (x1 y1)(X) (x2 y2)(Y) 今回は、行列だけなので、 (x1 x2) (y1 y2) と (x1 y1) (x2 y2) は、行列式も同じになるので特に困った事には成らないのでしょうか? 上の行列2つは転置行列になります。 X=(x1,x2) Y=(y1,y2) のベクトルを行列として表す場合、 (x1 x2) (y1 y2) と表しても、 (x1 y1) (x2 y2) と表してもどちらも間違いではないのでしょうか? 以上、ご回答よろしくお願い致します。

  • 転置行列の成分について

    線形代数学の転置行列について質問です A=(aij),B=(bij)を(m,n)型行列とするとき、Bの転置行列tBの第i行の成分を書き下せ。 という問題なのですが、 僕は「tBの第i行成分はBの第i列成分と等しいので b1i ,b2i ,…,bmiとなる」のだと思っていたのですが、友達に聞くと 「b1j,b2j,…,bmj」だと言われました。 そもそも「tB1の&#65374;」という部分が僕の考え間違いなのでしょうか。 どなたかわかりやすく教えてください、よろしくお願いします。

  • 列ベクトル、行ベクトル、ベクトルの成分表示の違い

    この3つに使い方の違いはあるのでしょうか? 例えば、成分を求める問題で列ベクトルにしてから計算して成分表示したり、内積するときに成分表示で示されたベクトルを勝手に列ベクトルと行ベクトルに変えて計算してもよいのでしょうか?

  • 行列の平方和とは?

    初歩的な質問でお恥ずかしいのですが・・・。 行列Xと、負荷量ベクトルpがあります。 Xの各要素は標準化されています。 内積(p, p)、つまり、t(p)*pを、行列Xの平方和SS(X)で割ることによって寄与率を求める、 という記述に出会ったのですが、どうも腑に落ちません。 ここで、t(p)はpの転置ベクトルという意味で用いています。 t(p)*pがスカラーになるのはわかります。 しかし、SS(X)については、もしXがn行×m列の行列だった場合、 SS(X)=t(X)*Xで、n行×n列の行列になります。(よね?) スカラーを行列で割るというのがわからず、おそらく何か誤解をしているのだと思います。 それとも、行列Xの平方和SS(X)とは、t(X)*Xの主対角要素の和のことをいっているのでしょうか? もしそうだとすれば、Xは標準化されているため、tr(t(X)*X)=nとなり、 寄与率はt(p)*p/nで求められることになり、すっきりと理解できるのですが・・・。 付け焼き刃で勉強する不届きな文系人間に、どなたか説明していただけないでしょうか? お手数をおかけしますが、よろしくお願いいたします。

  • 複素行列と内積の関係

    お世話になります。よろしくお願いします。 Aを2次の複素正方行列、X、Yを2次の複素縦ベクトルとし、記号「・」が内積を表し、Aの転置行列をtA、Aの全ての成分を共役複素数 に置き換えたものを<A>とします その時「(AX)・Y=X・t<A>Y」となるらしいのですが、 これが分かりません。 ーーーーー以下私の考えです。ーーーーーーー まず複素数の内積の定義として、 X・Y=(tX)<Y> (tXは2次の複素横ベクトル) これを踏まえて 与式の左辺=(AX)・Y=t(AX)<Y>=tXtA<Y>=X・tA<Y>となり、 X・t<A>Yと一致しません。 何か勘違いしていると思うのですが、 よろしくお願い致します。

  • 4次元空間の3つのベクトルが互いに直交する条件

    以前、 4次元空間の4つのベクトルが張る空間が1次元、2次元、3次元、4次元である条件 http://oshiete1.goo.ne.jp/qa3519203.html において、いろいろ教えていただけました。 同様にすれば、4次元空間の3つのベクトルが張る空間が1次元、2次元、3次元である条件、が成分を用いて書けることになります。 ところで、いくつかのベクトルが張る空間が1次元というのは、すべてのベクトルが平行ということです。 今回、それとは逆に「すべてのベクトルが互いに直交する」という条件を考えてみたいと思います。 4次元空間にゼロベクトルでない4つのベクトルを考えます。 a↑=(a[1],a[2],a[3],a[4]) b↑=(b[1],b[2],b[3],b[4]) c↑=(c[1],c[2],c[3],c[4]) d↑=(d[1],d[2],d[3],d[4]) とします。 a↑、b↑、c↑、d↑の4つのベクトルが互いに直交する条件は、 4つのベクトルでできる立体=超立方体 なので、行列式の絶対値は、各辺の積と等しく、 |a↑ b↑ c↑ d↑|^2=|a↑|^2* |b↑|^2* |c↑|^2*| d↑|^2 とかけます。成分でも書けます。 a↑、b↑の2つのベクトルが互いに直交する条件は、 内積を用いて、 a↑・b↑=0 とかけます。成分でも書けます。 最後に、a↑、b↑、c↑の3つのベクトルが互いに直交する条件を、できるだけ簡素に書きたいとき、どういった書き方になるのでしょうか? すべての組の内積が0というのより、なんらかの行列式を用いて書きたいのですが。