• ベストアンサー

(4×4)行列の逆行列の求め方について

以下の問題がわかりません。 どなたか簡単な解き方がわかる方いらっしゃいませんでしょうか。 下の行列について、逆行列を求めなさい。 (4×4)行列で要素は以下。 a -b -c -d b a -d c c d a -b d -c b a 答えは、 1/(a^2+b^2+c^2+d^2)*(以下の要素の行列) a b c d -b a d -c -c -d a b -d c -b a 余因子行列を使って一つ一つの要素を16回計算すれば出るのですが、 時間がかかりすぎてしまいます。 何か良いやり方はないでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • ltx78
  • ベストアンサー率45% (10/22)
回答No.3

この問題では,行列の行/列ベクトルが直交系を構成しており, かつ各行/列ベクトルのノルムが等しい,というのがポイントになっています. 与えられた行列を,[X1^T X2^T X3^T X4^T] とします.`^T'は行列の転置です. つまり,X1 = (a b c d)^Tです.X2, X3, X4も同様にします. XとYの標準内積を<X, Y>で表します. つまり,<X, Y> = X * Y^T です. このとき, <X1, X1> = a*a + b*b + c*c + d*d = a^2 + b^2 + c^2 + d^2 となります. <X2, X2>, <X3, X3>, <X4, X4>も同じ値になりますね(確かめてみてください). また,<X1, X2>はA No.1で示したように,0になります. <X1, X3>, <X1, X4>, <X2, X3>, <X2, X4>, <X3, X4>も同様です. ということは, <X1, X1> <X1, X2> <X1, X3> <X1, X4> <X2, X1> <X2, X2> <X2, X3> <X2, X4> <X3, X1> <X3, X2> <X3, X3> <X3, X4> <X4, X1> <X4, X2> <X4, X3> <X4, X4> という行列は,対角成分が a^2 + b^2 + c^2 + d^2 で,残りが0の対角行列になります. 後は,どのようにこの行列を作るか,です.

miya1199
質問者

お礼

返信が遅れて申し訳ありません。 私の勉強不足にも関わらず、 大変丁寧な説明ありがとうございます。 非常にわかりやすかったです。 ありがとうございました。

その他の回答 (3)

回答No.4

問題の行列を(a^2+b^2+c^2+d^2)の平方根で割れば、各列は、正規直交系となっています。この行列をUと置けばUU'=E(U'はUの転置行列)。従って問題の行列の転置行列を求め、ノルムで割れば逆行列が求まります。

  • hgmrog
  • ベストアンサー率0% (0/1)
回答No.2

簡単なとき方というか,参考までに. a -b -c -d b a -d c c d a -b d -c b a この形の行列は四元数Hの4×4行列での表現になってます. だから一般の四元数 a + bi + cj + dk のノルムがa^2+b^2+c^2+d^2で逆元が a - bi - cj - dk で与えられることを知っていれば逆行列は簡単に 1/(a^2+b^2+c^2+d^2)*(以下の要素の行列) a b c d -b a d -c -c -d a b -d c -b a となるのがわかります.

miya1199
質問者

補足

ご回答ありがとうございます。 低レベルで申し訳ないのですが、四元数というのを初めて聞きました・・・。 早速ネットで調べてみたのですが、複雑すぎて何が何やら(^^; もし、公式のようなものでしたら教えて頂けないでしょうか。

  • ltx78
  • ベストアンサー率45% (10/22)
回答No.1

与えられた行列ですが,それぞれの行ベクトル同士,もしくはそれぞれの列ベクトル同士が直交しているのにはお気づきでしょうか? たとえば,第1行(a -b -c -d)と第2行(b a -d c)との内積を計算すると, a*b + (-b)*a + (-c)*(-d) + (-d)*c = ab - ab + cd - cd = 0 となりますね.

miya1199
質問者

補足

ご回答、ありがとうございます。 直交していることはわかったのですが、 その先をどうすればよいのかがわかりません…。 よろしければ、直交するとどのようなことが成り立つのか教えて頂けないでしょうか。 知識がなくて申し訳ありません。

関連するQ&A

  • 逆行列について。

    次の行列Aの逆行列を求めよ。 |0001| |00-10| |0-100| |1000| という問題なのですが それぞれの成分の余因子を求めて、 余因子の行列を転地したものに、1/det(A)をかけたものが逆行列ですよね? 4*4行列の余因子はどうやって求めればいいのですか?

  • 行列の逆行列について

    行列の逆行列について 行列の逆行列を求める問題です。 掃き出し法や余因子行列を利用して求める等 いろいろ求め方はあると思いますが次の場合どうすれば良いでしょうか? 次の行列の逆行列を求めなさい。 ただしaは複素数とする。 |1 a 0 0| |1 a 0 0| |0 1 a 0| |0 1 a 0| |0 0 1 a| |0 0 1 a| |0 0 0 1| |a 0 0 1| 複素数であれば普段通りの計算は出来ないですよね? 回答お願いします。

  • 逆行列 求め方

    逆行列の求め方について。 以下の内容はすべてdet(A)≠0:逆行列が存在することを前提にします。 2行2列の場合は、添付画像のように逆行列を求めていました。 これは、通常3行3列などで逆行列を求める場合に使う A^-1=A^~/|A|を簡単にしたものだと考えておりました。 式が見づらくてすいません。A^-1:逆行列、A^~:余因子行列です。 ここで質問なのですが、 2行2列の余因子行列は添付画像にある行列になるのでしょうか? 3行3列の場合はテキストなどに記載されている方法でわかるのですが 同様の方法では2行2列の余因子行列は作れません・・・ また、余因子行列を作る際に小行列式なるものが出てきます。 この小行列式と呼ばれるものは見た目は行列なのになぜ行列式 と呼ばれるのでしょうか? URL:http://kagennotuki.sakura.ne.jp/la/node5.html 以上、ご回答よろしくお願い致します。

  • 逆行列をかけると単位行列Eになる証明

    画像について、下の方の(ii)がわかりません。 一番わからないのは「j行の成分がai1、ai2、・・・ainとなって」というところです。 (1) 「行列式の第j行による余因子展開の式になっている」ということについて、「j行の余因子展開」は、行列Aの余因子に対して行列Aのj行の成分をそれぞれ掛けたものであると認識していますが、違うのでしょうか。 (2) (1)の、積の成分Cは余因子展開された値だから、Cの右辺は(n-1)次正方行列の行列式が並ぶので、そもそも「j行の成分がai1、ai2、・・・ain」にはならないと思います。 具体的に3×3の行列や2×2の行列をつくって計算しても0になりませんでした。 なにかそもそもの定義のあたりで間違っているような気がするのですが、どのあたりがおかしいでしょうか。

  • 平面の式と逆行列

    3点(0,2,2) (-2,0,0) (0,-2,-2次に)通る平面を求めました。 平面の式 ax+by+cz=0 にそれぞれ代入しa,b,c,dの連立方程式として求め、 2b+2c+d=0 -2a+d=0 -2b-2c+d=0 答えy-z=0 を得ました。次に、簡単化のため逆行列でa,b,cをdの式で求めようとしたところ、なんと行列式がゼロとなり求められません。 なぜ?直線上にない3点が定まれば平面が一意に定まり、当然逆行列も存在すると思ってましたが、違うのですか?また、この場合どうやって求めたらいいでしょうか?もちろんて計算ではなく自動計算化を考えてのことです。

  • 代数学 行列の問題です。

    代数学 n>2のときn次正方行列Aの余因子行列をB、Bの余因子行列をCとする。 Aは行列式が0でかつAの第n行はすべて0であるならば、Cは零行列であることを示せという問題です。 回答の方針やヒントなどでもいいのでお願いします

  • 行列式の公式

    行列A=(a_{ij})の余因子行列をB=(B_{ij})とします. Aが3行3列の場合, (1)   B_{11} B_{22} - B_{12} B_{21}=a_{33} |A| が成り立つと思います.Bの余因子行列をC=(C_{ij})とすると,(1)は (2)   C_{33}=a_{33} |A| と表せると思うのですが,Aが3×3の場合に (3)   C_{ij}=a_{ij} |A| という公式があるのでしょうか?(2)の場合は直接計算すれば証明できますが,(3)が成り立つ場合,どのように証明すればいいのでしょうか? また,Aが一般のサイズの行列のときに(3)に似たような公式はあるのでしょうか? よろしくおねがいします.

  • 逆行列 複素数

    画像の逆行列を求める際 aは複素数で空白は全て0です。 と問題文にあったのですが複素数を含んでいるからといって通常の 逆行列の求め方の変更点は特にないですよね。 4×4行列なので余因子行列は使わず(X E)を行基本変形で求めようと思ってます。

  • 余因子 小行列 余因子行列

    余因子とは、例えば2行2列の正方行列 A=(1 2)    (3 4) において、行列Aの1行1列目の成分における余因子は、 a^~11=(-1)^1+1|4| のように表されます。 また、小行列式とは上の2行2列の行列において 1行1列目の成分における小行列式は、 D11=|4| のように表されます。 余因子行列は逆行列を求める際に利用されます。 上の2行2列の行列の余因子行列をA^~とします。 余因子行列は余因子をそれぞれの成分毎に並べて さらに転置した行列です。 ここで、良く分からない点があります。 余因子と小行列式の違いは、あるのでしょうか? 符号の違いだけでしょうか? 私の認識では、余因子に比べ小行列式は 行列から着目している成分を排除した だけと認識しています。 また、ネットで調べると余因子と小行列式は同じ事を 示しているページもあり混乱しています。 余因子の記号チルダについて私が持っている、 初心者向けの参考書には、余因子にも余因子行列 にも~(チルダ)が付いています。 これもネットで調べると、余因子にチルダがついていない 場合があったりして混乱しています・・・ 以上、質問内容をまとめますと、 ・余因子と小行列式の違いはどこ? ・余因子にも、余因子行列同様にチルダ記号が必要か? 特に取り決めがない場合は、現在の主流の方を教えて下さい。 以上、説明がちょっとへたくそですがご回答よろしくお願い致します。

  • 逆行列の証明

    逆行列の証明 行列Aに対して、AX=Eを満たす行列XをX=(p,q,r,s)とするとap+br=1・・・(1) aq+bs=0・・・・(2) cp+dr=0・・・・(3)、cq+ds=1・・・・(4) (1)×d-(3)×bから(ad-bc)p=d (2)×d-(4)×bから(ad-bc)q=-b (3)×a-(1)×cから(ad-bc)r=-c (4)×a-(2)×cから(ad-bc)s=a ?=ad-bcnot=0のとき p=d/?,q=-b/?,r=-c/?,s=a/?ゆえにX=1/?(d,-b,-c,a) このようにXを定めると、上の計算の逆をたどってAX=E ・・・・・・・以下省略 教えてほしいところ 何故、上の計算の逆をたどる必要があるのか理解できません。 AX=Eが成り立つようなXを求めたんだから、AX=Eが成り立つに決まってませんか??? 確認する必要性を教えてください