• 締切済み
  • すぐに回答を!

数列

次の回答おねがいします 初項から第n項までの和Snが次の式で表される数列{An}がある。 Sn=2An+n^2-7 (n=1,2,3,・・・) (1)数列{Bn}の一般項を求めよ。 (2)数列{An}の一般項をもとめよ。 .

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数156
  • ありがとう数0

みんなの回答

  • 回答No.2
  • kenjoko
  • ベストアンサー率20% (23/110)

せめて,S1からS6くらいまで列挙して補足して下さい。 それが出来なければあきらめなさい。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「考える」という貴重な経験をあなたから奪うような無粋なことはしたくないので方針だけ: (1) むり. (2) 1つずらして引く.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数列(an)の初項から第n項までの和をSnとすると

    数列(an)の初項から第n項までの和をSnとするとき、次のそれぞれの場合においてanをnの式で表せ。 1、Sn=n(n+1)(n=1,2,...) 2、Sn=1/(n+1)(n=1,2,...) 等比数列(bn)の初項から第n項までの和TnがTn=p-3n+1/4(n=1,2,..)と表されるとき、定数pの値を定めよ。 nを自然数とするとき、次の数列(an)の一般項anを求めよ。 1、-7,-9,-8,-4,-3,-13 2、-5,-3,1,9,25,57 誰かわかる方教えてください

  • 数列を教えて下さい

    数列{an}は初項1の等差数列であり、a4+a5=16を満たしている。数列{an}の初項から第n項までの和をSnとし、数列{bn}、{cn}をそれぞれbn=1/2(Sn+S(n+2))(n=1,2,3,……)、cn=√(Sn・S(n+2))(n=1,2,3,………)によって定める。 (1)anをnを用いて表せ。 (2)Snをnを用いて表せ。また、bn、cnをそれぞれnを用いて表せ。 (3)b1、c1、b2、c2、b3、c3、………、bk、ckと並べた数列がある。この数列の初項から第2m項までの和をmを用いて表せ。ただし、m=1,2,3,………とする。

  • 数列を教えて下さい

    数列{an}は初項1の等差数列であり、a4+a5=16を満たしている。数列{an}の初項から第n項までの和をSnとし、数列{bn}、{cn}をそれぞれbn=1/2(Sn+S(n+2))(n=1,2,3,……)、cn=√(Sn×S(n+2))(n=1,2,3,………)によって定める。 (1)anをnを用いて表せ。→解けました。 an=2n-1です。 (2)Snをnを用いて表せ。また、bn、cnをそれぞれnを用いて表せ。 (3)b1、c1、b2、c2、b3、c3、………、bk、ckと並べた数列がある。この数列の初項から第2m項までの和をmを用いて表せ。ただし、m=1,2,3,………とする。 解答と解説をよろしくお願いします。

  • 数列です

    1,1+2,1+2+3,……,1+2+3+……+n,…… という数列があり、 (1)第k項をkの式で表せ。 (2)初項から第項までの和Snを求めよ。です (1)は普通に考えて連続する自然数の和 n/2(n+1)で解決したのですが…問題は(2)でして自分の回答を書くので間違えているところがあれば指摘をお願いします。 ※Σの正しい書き方がわからないのでここではΣの上の式をn-1で下の式をk=1として省略します。すいません まず1,1+2,1+2+3,……,1+2+3+……+n,……をAnとして Anの初項から第6項までを1,3,6,10,15,21と求めます。 次にSnの初項から第5項までを1,4,10,20,35と求め、 Snの階差数列Bnの初項から第4項までを3,6,10,15を求め、 さらにSnの第2階差数列Cnの初項から第3項までを3,4,5と求めることができます。 ここでCnの一般項{Cn}=k+2 Bn=B1+Σ(k+2)=n^2/2+3n/2+1 よってBnの一般項{Bn}=n^2/2+3n/2+1 したがって同様に{Sn}を求めます。 Sn=S1+Σ(k^2/2+3n/2+1)=n/6(n+1)(n+2)となります。 最終的な答えは合っているのですが途中経過が一切書かれてなく合っているか不安です。 あと、もっとスマートに解ける方法がありましたら是非教えていただきたいです。 お願いします。

  • 数列の問題です

    数列(An)は等差数列で、A3=7,A9=19である。 また、数列(Bn)の初項から第n項までの和をSnとするとき、 Sn=2n+1(n=1,2,3・・・・)である。 (1)Anを用いて表せ。 (2)B1を求めよ。また、n>=2のときBnをnを用いて表せ。 分かる方お願いします><

  • 数列の問題です

    数列の問題です。 数列{an}の初項から第n項までの和をSnとするとき、関係式Sn=2an+nが成り立っている (1)n≧2のとき、anをan-1を用いて表せ (2)n≧1のとき、bn=an+1ーanとおく。bnをnを用いて表せ。 (3)anをnを用いて表せ (1)はわかりましたが、(2)(3)がわかりません。どなたか教えて下さい。宜しくお願い致します。

  • 数列の問題です

    数列{An}の初項から第n項までの和をSnとするとき、関係式Sn=2An+nがなりたっている。 問題  n>=1のときBn=An+1-Anとおく。Bnをもちいてあらわしなさい。    解答がわかるかた解説つきでお願いします。

  • 数列【和で与えられた数列】

    以下の問題の解き方が分かりません。 初項から第n項までの和Snが Sn=2n^2-n(^2は2乗) で与えられる数列の一般anを求めよ。 解説には、 n≧2のとき an=2n^2-n-{2(n-1)^2-(n-1)}   =4n-3 a1=S1=1 答え:4n-3 とあるのですが、どうやったらこの式が導き出されるのか皆目分かりません。 ご回答を宜しくお願い致します。

  • 【数列】

    {an}を数列とし、Sn=Σ(k=1~n)akとする。 等式2an=Sn+n^2-4n+3(n=1、2,3、…)が成り立つとき、 (1)a1、a2を求めよ。 (2)bn=a(n+1)-an+2とおくとき、数列{bn}の一般項は? (3)数列{an}の一般項 (2)から自信がありません。 解き方をちゃんと知りたいので、教えてください! お願いします。

  • 数列

    次の数列の初項から第n項までの和を求めよ。 1,1+2,1+2+3,・・・・・ (解)与えられた数列の一般項をAn,求める和をSnとすると, An=1+2+3+・・・・+n=1/2n(n+1) と解の途中まではこうなっているんですが、Anがなぜこうなるのかわかりません。私はAn=1+3+6+・・・と思ったんですが・・・