• 締切済み
  • 暇なときにでも

ユークリッド空間と距離空間の違いについて

位相の本を読んでいるのですが ユークリッド空間と距離空間の違いがよくわかりません。 両方とも距離が定義されています。 違いと言えば、対象としている集合が ユークリッド空間R^n 距離空間は、一般の集合 です。 一般の集合に対して、距離というものが定義できるものが 距離空間で、ユークリッド空間はその1つと考えれば よいのでしょうか。 以上です。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数1155
  • ありがとう数2

みんなの回答

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

ん~, 「つまらない」といえばその通りではあるんだけど, 「定義を確認する」というのは重要なことだよね. 「集合」として R^n を取り, その 2つの要素 x = (x1, ..., xn), y = (y1, ..., yn) に対して d(x, y) = √((x1-y1)^2 + ... + (xn - yn)^2) という関数を定義するとこれは「距離の公理」を満たす. だから「R^n と d のペア」で 1つの「距離空間」となり, これを「(n次元) ユークリッド空間」と呼ぶ, と. 「距離」として違うものをもってくれば当然違う距離空間が得られます.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご丁寧にありがとうございます。 なかなかよい意味でほっといて、先に進むということが 出来ない性分なので質問させて頂きました。 なんだそんなものかという気持ちになりたかったのです。 これに限った話ではありませんが 発想が面白いですね。 距離そのものの定義ではなく、距離が満たす性質 を取り上げ、これを満たすものを距離とする。 こうして定義した距離とその集合で、距離空間というものが 構成される。 この前、線形代数の勉強をしていたのですが 丁度、線形空間もこれを満たすものを線形空間といい その要素をベクトルという。 そうすると、有効線分で表現される幾何ベクトルだけではなく 様々なものが扱える。 これも距離を抽象化して、距離空間を考える。 あとは、そう定義した空間が面白いかどうかなのでしょうけれども とても面白いなと思います。 ただ、距離空間そのものは、位相空間の前座みたいなもので これ自身、それほど話題が豊かな素材でもないと思うのですが 先に控えている位相が楽しみです。 今後の数学的な構造を見るための文法のような気はしますけれども。 ちなみに、Wikipediaを見たら ハミング距離 なんてものもあるのですね。

関連するQ&A

  • 有限距離空間のユークリッド空間への等長埋め込みは可能?

    元の個数が有限である距離空間を十分次元の高いユークリッド空間に等長に埋め込むことは可能ですか?また可能ならどうやって示せばよいでしょうか?教えてください。

  • 距離空間についての問題です。

    距離空間についての問題です。 (A,d) を距離空間とし、B⊂A をコンパクト集合とする。1点b∈¬B に対し、次の3つの条件をみたす開集合 U,V が存在することを証明しなさい。( b は B の元ではないという意味です) B⊂U, b∈V ,U∩V=φ この証明問題が解けずに困っています。 よろしければ回答よろしくお願いします。

  • 距離空間でどのように開集合族をとれば位相空間になる?

    よろしくお願い致します。 距離空間Xはその距離によって定められる開集合族をGとすればXは位相空間になると本に書いてあったのですが いまいち文意が分かりません。 距離d:X^2→Rに於いて、具体的にどのようにGを定めればいいのでしょうか?

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「定義できる」じゃなくて「定義されている」とすべきだとは思いますが, そんな感じでしょう.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

つまらない質問かと思いますが ご回答ありがとうございました。

関連するQ&A

  • (X,ρ)を距離空間とするとき

    (X,ρ)を距離空間とするとき β={B(x,r)|x∈X,r>0}∪{Φ} とすると,βは位相の基である. という定理の証明について質問です. 位相の基であることを示すには,その条件の一つとして ∪[B∈β]B=X であることを示さなければなりません. そこで,2つの包含関係 (i)∪[B∈β]B⊂X (ii)∪[B∈β]B⊃X はどのようにして示せばよいのでしょうか? よろしく願いします.

  • 距離空間における同値について

    距離空間の問題でわからないものがあります↓ d1(x,y)=Σ(i=1~n)|x(i)-y(i)|とする。 (X,d)を距離空間とする時、 d'(x,y)=d(x,y)/(1+d(x,y)) と定義すると(X,d')も距離空間である。 d1とd'は同値ではないことを示せ。 という問題です。 すこし表示がわかりにくいんですけど、x(i)っていうのはxのi番目のものって意味のつもりです。 ちなみに同値っていうのは 距離関数δ,ζに対してk≧1が存在し、 (1/k)δ≦ζ≦kδとなる と定義されています。 自分ではd'とd1が同値であることを仮定して矛盾を導くのかな?と考えたんですが、矛盾が導けません。 教えてください!

  • 距離空間について

    (X,d)を距離空間とする。空でない集合Yからの写像f:Y→Xを考える。ここで写像d’:Y×Y→Xを次のように定める。 d’(x,y)=d(f(x),f(y)) このとき、fが単射であることがd’がY上の距離であるための必要十分条件になることを示してください。 よろしくお願いします。

  • 距離空間について

    距離空間についての問題です。 R^n∋x,y x=(x1,…,xn),y=(y1,…,yn) d_1(x,y)=Σ|x_i-y_i| は距離関数として与えられています。 問題:R^n∋a,b、a≠bとする。 n=2のとき、{x∈R^n:d_1(a,x)+d_1(x,b)=d_1(a,b)}は、どのような集合か。 d_1(a,x)+d_1(x,b)=d_1(a,b)より、 xは線分ab上の点なのではないかと予想しています。 しかしこれをどのように証明すればよいのかわかりません。 アドバイス等がほしいです。 よろしくお願いします。

  • 全有界な距離空間がわかりません

    「(X, dx)を距離空間とする.この距離空間が全有界であるなら,部分距離空間(Y, dx)も全有界である.(X, Yは集合,dxは距離)」 この命題は正しいのでしょうか?この命題が正しければ,納得する他の命題が2つほどあります.ですが,参考書のどこにもこの命題については書かれておらず,自分で証明しようとしましたが,できませんでした. この命題が正しいのかどうか,ご教授願います.

  • アフィン空間 ユークリッド空間 ベクトル空間

    アフィン空間についていろいろ勉強しているのですが、なかなかわからなくて・・・もう何度質問したことか>< アフィン空間はベクトル空間ではないと思っているのですが、アフィン空間とベクトル空間が同じになる場合があるのでしょうか? 一次結合の係数和が1の時、アフィン空間=ベクトル空間となるのでしょうか? また、アフィン空間はユークリッド空間から絶対的な原点・座標を取り除いた空間ですよね(wiki参照)。以前の質問で、計量の有無はアフィン空間であるか否かには関係無いとの事でした。 ということは、アフィン空間はベクトル空間ではないが位相空間、計量を定義すれば距離空間となるのでしょうか? 私のイメージでは、 ある集合→(ベクトルを定義)→ベクトル空間→(位相を入れる)→位相空間→(ノルム・内積を定義)→距離空間 なんですが・・・ アフィン空間はこのイメージから外れてしまって良くわからないのです・・・

  • 距離空間におけるコンパクト性

    距離空間において、コンパクト集合と点列コンパクト集合が同値であることの証明をできるだけ理解したいのですが、参考書のの証明がイマイチ理解できません。 (参考書の証明) (1) コンパクト距離空間Xの任意の点列{x_n}n=1,2,…が収束部分列をもつことを示す。 この点列に対して、A_k={x_k,x_k+1,…}とおき、その閉包(A_k)'全体のなす集合族{(A_k)'}を考える。 {(A_k)'}の各元(A_k)'は空でない閉集合で、単調減少(A_1)'⊃(A_2)'⊃…(A_k)'⊃…であるから有限交叉性をもつ。したがって、Xのコンパクト性より共通部分(A_k)'は空でない。共通部分(A_k)'から1点xを選べば、xは(A_1)'に属するからd(x_(n_k),x)≦1/kなるx_(n_k)∈A_kが存在する。このとき、n_k≧kより数列{n_k}は異なる自数数を無限個含むから、{x_(n_k)}は{x_n}の部分列であり、また明らかにxに収束する。よって、点列{x_n}は収束部分列をもつ。 (2) 距離空間Xが点列コンパクトであると仮定し、Xの任意の開被覆{V_λ}が有限部分被覆をもつことを言う。最初に、{V_λ}に対して、ε>0が存在して、任意のx∈Xのε近傍U(x;ε)が{V_λ}のどれかの元V_λに含まれることを示す。このようなεを開被覆{V_λ}のルベーグ数とよぶ。ルベーグ数が存在しないならば、各kに対し、その1/k近傍がどの{V_λ}の元にも含まれないような点x_k∈Xをとることができる。こうして得られた点列{x_k}は、Xの点列コンパクト性より収束部分列をもつ。その極限をx_∞とおくと、{V_λ}はXの被覆であるから適当なV_λ∈{V_λ}がx_∞を含む。V_λは開集合であるから、μ>0が存在してU(x_∞;μ)⊂V_λ。十分大きいk'をとれば、1/k'<μ/2とd(x_k'、x_∞;μ)<μ/2とが同時に成り立つが、このときU(x_k';1/k')⊂U(x_∞;μ)⊂V_λとなって点列{x_k}のとりかたに矛盾する。すなわちルベーグ数の存在が示さfれた。さて開被覆{V_λ}が有限部分被覆を持たないとして矛盾を導く。{V_λ}に対するルベーグ数をεとし、これを用いてXの点列{x_n}を以下のように構成する。まず任意のx_1∈Xを選ぶ。このとき、U(x_1;ε)を含むV_(λ1)∈{V_λ}が存在する。もし、X-V_(λ1)が空ならばXがV_(λ1)だけで覆われるからX-V_(λ1)≠φであり、点x_2∈、X-V_(λ1)を選ぶ事ができる。同様にU(x_2;ε)を含むV_(λ2)∈{V_λ}が存在するが、X-(V_(λ1)またはV_(λ2))はやはり空でない。よって、x_3∈X-(V_(λ1)またはV_(λ2))を選ぶ事ができる。この操作を繰りかえして得られた点列{x_n}はn>mに対してx_nはU(x_m;ε)に含まれない、すなわちd(x_n、x_m)≧εを満たすから収束部分列を含みえない。これはXが点列コンパクトであることに反し、矛盾が生じた。 (証明終わり) まず有限交叉性の全く意味がわかりません。 私は、点列コンパクトとコンパクトの定義を以下のように学習しています。 X:集合、P:開集合族 (X、P):位相空間 K⊂Xがコンパクト ⇔{U_λ}⊂Pかつ和集合U_λ⊃K(λ∈Λ)、この時、和集合U_(λ_k)⊃K(k=1→n)となるようなλ_1、…、λ_n∈Λが存在する。 K⊂Xが点列コンパクト ⇔K内の任意の無限点列{x_n}(n=1、2、…)がKの点に収束する部分列を持つ。 なるべく定義に従って、証明していきたいです。 どなたか、詳しく証明を解説してほしいです。 回答よろしくお願いします。

  • 大学数学、位相、距離空間について

    次の問題が分かりません。 距離空間(X,d)の部分集合Fについて、次の条件(1)と(2)は同値であることを示せ。 (1)Fは閉集合である。 (2)Fの点列{x_n}がx∈Xに収束するならばx∈F 位相が苦手でほとんどわからないので、分かる方よろしくお願いします。

  • 距離空間の問題です。

    距離空間の問題です。 (X,d):距離空間 Bd1(p;r) = {x∈X|d(x,p)<r} (←開球体?) Bd2(p;r) = {x∈X|d(x,p)≦r} (←閉球体?) としたとき、Bd1(p;r)とBd2(p;r)の境界は共に {x∈X|d(x,p)=r} になることを示せ という問題です。解く方針としては A = Bd1(p;r)とすると X = Ai(Aの内部)∪Ae(Aの外部)∪∂A(Aの境界) からAiとAeを求めて、∂Aを導く Aは開集合より、Ai=A={x∈X|d(x,p)<r}...(1) X-A={x∈X|d(x,p)≧r}より Ae=(X-A)i=・・・={x∈X|d(x,p)>r}...(2) (1)(2)より ∂A={x∈X|d(x,p)=r} という感じで示そうとしたんですが (2)の・・・の部分がうまくできません どのように言えばいいんでしょうか? また、閉球体の方の示し方もお願いします

  • 距離空間

    Xをとある路線の駅に例えて つまり、X={a1,a2,a3…a10} とし、運賃は一律140円。x駅からy駅までの運賃をd(x,y)とすると d(x,y) = 1(x≠y)、0(x=y) であるときに(X,d)は距離空間である事をしめしたいです。