• ベストアンサー
  • すぐに回答を!

積分 問題

積分 問題 ∫xlog(1-x)dxについて。 部分積分を使って解きました。 ∫xlog(1-x)dx=∫((1/2)x^2)´log(1-x)dx =(1/2)x^2・log(1-x)-∫(1/2)x^2・1/(1-x)・-1dx ∫(1/2)x^2・1/(1-x)・-1dxについて考える。 ∫(1/2)x^2・-1/(1-x)dx=1/2∫-(x^2)/(1-x)dx =1/2∫-(x^2)+1-1/(1-x)dx=1/2∫(1-x)(1+x)-1/(1-x)dx =1/2∫(1+x)-(1/(1-x))dx=1/2(x+(1/2)x^2-(-log(1-x)))+C =1/2(x+(1/2)x^2+log(1-x))+C よって、 ∫xlogx(1-x)dx= (1/2)x^2・log(1-x)-1/2(x+(1/2)x^2+log(1-x))+C としたのですが、答えはどうでしょうか? 間違っている場合は、どこが間違っているのか 教えて頂けるとありがたいです。また、もっと簡単な 解き方があれば教えて下さい。 以上、よろしくお願い致します。

  • RY0U
  • お礼率40% (434/1065)

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数90
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • R_Earl
  • ベストアンサー率55% (473/849)

(1/2)x^2・log(1-x)-1/2(x+(1/2)x^2+log(1-x))+Cを xで微分すると、xlog(1-x)に戻ります。 なのであっていると思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございました。

関連するQ&A

  • 積分 問題

    積分 問題 ∫xlogx(1-x)dxについて。 部分積分を使って解きました。 ∫xlogx(1-x)dx=∫((1/2)x^2)´log(1-x)dx =(1/2)x^2・log(1-x)-∫(1/2)x^2・1/(1-x)・-1dx ∫(1/2)x^2・1/(1-x)・-1dxについて考える。 ∫(1/2)x^2・-1/(1-x)dx=1/2∫-(x^2)/(1-x)dx =1/2∫-(x^2)+1-1/(1-x)dx=1/2∫(1-x)(1+x)-1/(1-x)dx =1/2∫(1+x)-(1/(1-x))dx=1/2(x+(1/2)x^2-(-log(1-x)))+C =1/2(x+(1/2)x^2+log(1-x))+C よって、 ∫xlogx(1-x)dx= (1/2)x^2・log(1-x)-1/2(x+(1/2)x^2+log(1-x))+C としたのですが、答えはどうでしょうか? 間違っている場合は、どこが間違っているのか 教えて頂けるとありがたいです。また、もっと簡単な 解き方があれば教えて下さい。 以上、よろしくお願い致します。

  • 対数の不定積分

    対数の積分で、例えば∫log(3x)dxという問題があったときに 普通に部分積分を使って解く方法とは別に∫log(x)dx=xlog(x)-x+Cを利用しても解けると聞いたのですが今一分かりません とりあえず∫log(3x)dx=∫(log3+logx)dxという風にしてみたのですが、log3をxで積分するところで躓きました。定数なので○xという形になるとは思うのですが・・・。 何かやり方が違うのでしょうか?

  • 1/xlog(x)の積分について

    1/xlog(x)を(1/x)(1/log(x))と考えて、部分積分しようと思ったところ、 1/xの積分はlog(x)、1/(log(x))の微分は-1/(x(log(x))^2)なので、 ∫(1/xlog(x))dx=log(x)(1/log(x)) - ∫log(x)(-1/(x(log(x))^2))dx =1 + ∫(1/xlog(x))dx となり、 0=1となってしまいます。 これはどこがおかしいのでしょうか。 私は計算ミスやうっかりミスが多いため、今回もその類かと思ったのですが ミスらしいミスが見当たりません。 どなたかご指摘お願いします。

その他の回答 (1)

  • 回答No.2
  • info22_
  • ベストアンサー率67% (2650/3922)

答えは合っています。 途中計算のやり方はあっていますが、途中計算の「-1」や分数式の分子全体には括弧をつけた方がいいかと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。 括弧つけるようにします。

関連するQ&A

  • 部分積分法の問題について教えてください!!

    今、「部分積分」の問題を解いて不明な点があるので教えてください! 【問題】∫log(x+1)dx 【解答】 =∫1・log(x+1)dx =(x+1)log(x+1)-∫(x+1)×1/(x+1)dx =(x+1)log(x+1)-∫1dx =(x+1)log(x+1)-x+C 上記の解答で、部分積分法の公式「∫f(x)g´(x)dx=f(x)g(x)-f´(x)g(x)dx」を利用するために、【解答】の1行目に1を置いてるのは分かります。 しかし、2行目公式のg(x)にあたる部分(2行目の最初の(x+1)と-∫以降の(x+1))が何処から来た値なのか分かりません。 説明が不十分だと思いますがよろしくお願いします。

  • 数(3)・不定積分 : log(x+2)、log(1-x)の積分の仕方

    数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。 最初の問題は部分積分法の公式を使うと ∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、 解答は log(x+2)・x-x+2log|x+2|+C (Cは積分定数) となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。 次の問題は、上と同じようにして部分積分法の公式を使うと ∫log(1-x)=log(1-x)・x+∫x/(1-x)dx …(2)となり、 解答は x・log(1-x)-x-log|1-x|+C(Cは積分定数) となるのですが、ここで、(2)式の右辺、∫x/(1-x)dxの部分を、部分分数に分けて∫{-1+1/(1-x)}にするのですが(今の式の『-1』は、(1-x)で割られない、普通の-1です)、そういう風に変形する意味が分かりません。 分かる方が居ましたら、教えて下さると嬉しいです!

  • 積分問題∫√(x^2+a)dxです。

    ∫√(x^2+a)dxの積分が分かりません。∫1/√(x^2+a)dxは部分積分を用いて、t=x+√(x^2+a)とおいてlog|x+√(x^2+a)|+c で解けましたが、同じようにできるのでしょうか。よろしくお願いします。

  • 定積分の問題

    ∫(0から2){x/(3-x)^2}dxの定積分を求めよ。という問題なんですが、友達にヒントをもらい、部分積分法を使って解いてみました。 ∫(0から2){x(3-x)^-2}dx =[x(3-x)^-2](0から2)-∫(0から2){(3-x)^-2}dx =・・・ と計算していって答えは2-log3になったのですが、どこか物足りないような気がします。こんな単純な計算でいいのでしょうか? 部分積分法なら、最初に何を微分したものかを考えると思うのですが、友達に聞いたところ、これで合ってると言われました。 もしこのやり方が間違っていたら、解法を詳しく教えてください。お願いします。

  • 積分

    ある問題の計算の過程で、∫(1→0)logx dxをとくことになったのですが、部分積分で [xlogx](1→0)-∫(1→0)logx dx となるとおもうのですが、[xlogx](1→0)のところで、x=0のときはどうしたらいいのでしょうか?ロピタルの定理を使うのでしょうか・・?そうでしたら、使い方を教えてください。

  • 高校数学 積分

    ∫-1→1 (x+2)log(x+2)dx という問題で、部分積分法で解くのに、解答はx+2を積分して(x+2)^2としています。確かにこれだと、処理が簡単なのですが、1/2x^2+2xとしても微分するとx+2になるのですが、これで計算すると、(面倒くさいやり方ですが)答えが合いません。積分定数はなんでもよいのではないのでしょうか?わかりにくい説明ですみませんが、どなたかわかる方、お知恵を貸してください。

  • 積分問題

    積分ができません。 x*2^x の不定積分です 答えは 2^x*{(xlog2)-1}/(log2)^2+C となっています。 解き方を教えてください

  • 積分の解き方

    ∫(x-1) * exp((1/2)*x^2 - x) dxの解き方を教えてください。 答えはexp((1/2)*x^2 - x)になるらしいんですが 自分で部分積分を使って解くと (x-1) * (1/(x-1)) * exp ((1/2)*x^2 - x) - ∫(1/(x-1)) * exp((1/2)*x^2 - x) dx =exp ((1/2)*x^2 - x) - ∫(1/(x-1)) * exp((1/2)*x^2 - x) dx となって -∫(1/(x-1)) * exp((1/2)*x^2 - x) dxが消えてくれません。 他の解き方じゃないとダメなんでしょうか? それとも、そもそも部分積分の使い方が間違ってるんでしょうか? アドバイスよろしくお願いします。

  • 積分に関する問題

    こんにちは。 積分の範囲の問題で分からないものがあるので質問させてください; ∫[∞,0]e^(-x^2)dx=√π/2であることを利用して次の積分の値を求めよ。 (1)∫[∞,-∞]e^{-(x^2)/2}dx (2)∫[∞,-∞]x^2e^{-(x^2)/2}dx (2)はx・x2e^{-(x^2)/2}に分けて部分積分をするみたいです。 答えは両方√(2π)なのですが解き方が分かりません。 分かる方、よろしくお願いします。

  • 積分がわかりません

    いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。