ベストアンサー Rにおいて 2010/06/24 17:53 Rにおいて f3 <- function(x) { return(pweibull(1,shape=1,scale=x)) } という関数はx=1において微分可能ですか。可能ならば、その値はいくつになりますか。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー ur2c ベストアンサー率63% (264/416) 2010/06/24 19:10 回答No.1 plot(f3,0.5,1.5) を見て微分可能と判断。 > d <- function(f,x=0,h=1e-6){(f(x+h)-f(x))/h} > d(f3,1) [1] -0.3678793 > d(f3,1,-1e-6) [1] -0.3678796 で、値は -0.367879 画像を拡大する 質問者 お礼 2010/06/28 16:30 回答ありがとうございました。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A データ解析ソフトRのベクトルと関数について フリーのデータ解析ソフトRですが、以下のような処理を行いました。 x<-c(-2,-1,0,1,2) f(x) これは-2,-1,0,1,2という配列形式のデータ(ベクトル)に対して関数fをそれぞれの値に対して作用させて、結果をまたベクトルデータに保存します。 fの中身ですが、負と非負の場合に異なる処理になるようにしています。 f<-function(x){ if(x<0) return(.....) #負の場合の処理 else return(.......) #非負の場合の処理 } このような関数では場合分けが効かず、片方の処理(たぶん上側)しか有効ではありません。警告も出ますし、結果を図示してもそうなっています。符合による場合分けを有効にする方法を教えて頂きたいのですが。 よろしくお願いします。 Rの微分同相で一次関数以外にありますか? f:R→RをC^∞微分同相写像であり、 fとその逆函数gのすべての微分が有界であるとします。 そのような函数の例として一次函数f(x)=ax+b があると思うのですが、これ以外の函数は存在しないのでしょうか。 それとも反例は見つけられないものでしょうか。 カリー化について教えてください。 初心者です。現在、カリー化について勉強中で、以下のサンプルコードを解読中なのですが、いまいち理解できません。以下を中心に、どなたか解説していただけるとうれしいのですが。 1.curry(f,x)の第一引数fは、関数で、第二引数xは変数と理解してよいのでしょうか? 2.カリー化により、最終的に返される値f(x,y)というのは、curry関数が呼び出された際の第一引数の関数f()に、curr関数の第二引数と、function式を用いて直接宣言されたyを渡した結果が返されるということでしょうか? 3.仮に、curry(add,1)と呼び出した場合には、yにはどのような値が入るのでしょうか? 4.その他、カリー化を学ぶ上で重要なことがありましたら教えてください。 function curry(f, x) { return function(y) { return f(x, y); } } 関数の微分 f(x)=x^2sin(1/x) (x≠0) , 0 (x=0) このような関数を微分した時、 f'(0)=0 となるらしいのですが、何故微分係数が存在できるのでしょうか。どのようにして 0 という値が求まったのでしょうか。 また、 f(x) が x=0 で 1 となった場合の f'(0) は存在するのでしょうか。存在するならば、その値はどうなるのでしょうか。 陰関数の微分について 陰関数の微分についてよくわからないところがあるので質問します。 R^2の開集合U上で陰関数f(x,y)=0 (f:R^2→RでfはU上C^1級)が与えられているとする。 両辺の微分を取ると、(∂f/∂x)dx+(∂f/∂y)dy=0となる。という記述がありますが、いまいち理解できません。なぜなら、f(x,y)はU上定義されている関数で微分を取ることはわかりますが、右辺の0はここでは U上恒等的に0、すなわち関数として0という意味ではないので, 右辺の微分を取って等式とするのは変だと思ったからです。 ここを納得するにはどう考えればよいのでしょうか。 偏微分について 偏微分について R^2上C^1級関数f(x,y)があるとする。 R^2上任意の(x,y)でx,yそれぞれの偏微分が0であれば、R^2上、fは定数であることを示せ。 そうなることはわかるのですが、どうやって示せばいいのかよくわかりません。 よろしくお願いします。 定義から導関数を求める 定義1 I=(a,b) a<b f;I→R(実数),x0∈I に対してfはx0で微分可能 ⇔ ∃α∈R(実数):f(x)=f(x0)+α(x-x0)+o(x-x0) (x→x0) 定義2 fはI上で微分可能 ⇔ f'はIの任意の点で微分可能。このときf';I∈x0→f'(x)∈R(実数)なる函数が定まる。これを導関数と言う。 微分の定義に基づいて、次の導関数を求めよ。 f(x)=exp(ax) (a∈R\{0}) o(g(x))=f(x)⇔lim[x→x0]f(x)/g(x)を用いるのでしょうか?どんな風に解答すればいいのか分かりません。よろしくお願いします。 【数学】関数x=x(t)という表記の解釈について 偏微分の分野でx=x(t)という表記が出てきたのですが、どういう意味なのかが分かりません。 (y=f(x)だったらxを関数fで処理してできた値がyという意味は分かります。) また、偏微分と常微分の違いは、固定する変数の有無から、常微分は一変数関数の微分で、偏微分はニ変数以上の関数の微分ですよね? 偏微分の問題に関する質問です。fはC^2級とします。関数u=f(sqr 偏微分の問題に関する質問です。fはC^2級とします。関数u=f(sqrt(x^2+y^2))とし、また r=sqrt(x^2+y^2)とおきます(r>0)。このとき、uをx,yで偏微分したときの1次、2次の偏導関数はそれぞれどのようになるでしょうか? 偏微分の問題です。 偏微分の問題です。 f(x):R上微分可能な関数 f(y/x)について f_x(y/x)=f_y(y/x)は成り立ちますか? よろしくお願いします。 数学の問題の解き方を教えてください 微分可能な関数f(x)が、任意の実数a、bに対して f(a+b)=f(a)+f(b)+3abf(a+b-2)+1 を満たし、x=0におけるf(x)の微分関数が2である時f(0)の値と、f(x)の導関数を求めよ。 の解き方を教えてください。 途中式もお願いします 微分可能関数の証明 関数f:R→Rがxバー∈Rで微分可能ならば、fはxバーで連続であることを示しなさい。 わからないので教えてください。 よろしくお願いします。 カントール関数が悪魔の階段と呼ばれる理由 カントール関数(悪魔の階段)について質問です。 ほとんどあらゆる点で微分値が0になることと、非可算無限の点において関数の値が変化することが特徴のカントール関数ですが、この関数のどこが不思議であると考えればよいのでしょうか。 例えばf(x)=0 (x<0), f(x)=1 (x≧0) のような関数でも、ほとんどの点で微分値が0で、1点においてだけ関数の値が変化しますが、このような関数との違いが理解できません。 例示した関数の場合、x=0でf(x)の値が1増加することが明らかである一方、カントール関数の場合はそのような点が無限個存在するため、関数の値がある点においていくつ増加するということを明示的に示せないことがポイントのように思えるのですが、しっくりと来る不思議感が見いだせません。 ご教授よろしくお願いします。 θはrの関数か? 微分で2つほど疑問がわいたので質問します。 球面三角形の定理、球面上の2点を、球面に沿って結ぶ曲線のうち、長さの最も短いものはこの2点を通る大円の劣弧である。これを導関数を用いて考えると、添付した図のように、長さ2aの線分ABを弦とし、半径r、中心角2θの扇形を考えて、 弧ABの長さをSとすればS=2rθ・・・(1) sinθ=a/r ただし0<θ<π/2・・・(2) dS/dr=2{θ+r(dθ/dr)}この微分の部分が最初の疑問点です。 積の導関数を使っていると思うのですが、θはrの関数かがわかりません。最初は、dS/dr=2θと間違えました。 自分は、積の導関数は、sin^2xcos2xのように同じ変数の関数の積に対して導関数を求めるものだと思いました。どなたかdS/dr=2{θ+r(dθ/dr)}を解説してください。お願いします。 本では、(2)よりθ=sin^(-1)(a/r)(0<θ<π/2)これをrで微分して、dθ/drを求め、dS/dr=2(θ-tanθ)・・・(3)。扇形の面積{(1/2)r^2θ}と三角形の面積{(1/2)r^2tanθ}を比べて、θ<tanθ(0<θ<π/2)より、dS/dr<0よってSは減少関数であることがわかり、定長線分ABの両端を通る円弧は半径が大きいほど短い。ここが2つ目の疑問点です。これはrが大きくなれば、θ-tanθの値が小さくなっていく(θの値が一定で、tanθが大きくなる)と考えればよいでしょうか?どなたか、定長線分ABの両端を通る円弧は半径が大きいほど短い。の解釈はこれでよいかを教えてください、お願いします。 合成関数の微分 合成関数の微分に関する問題なのですが、 f(x,y)をx=rcosθ、y=rsinθで変数変換し、f(x,y)=g(r,θ)としたとき、 ∂f/∂x、∂f/∂yを∂g/∂r,∂g/∂θで表せ。 という問題がうまく解けません。合成関数の微分の公式を用いていけばよいと思うのですが、∂g/∂r,∂g/∂θがどうやって出てくるのかがわかりません。どなたか教えていただけませんでしょうか?よろしくお願いします。 合成関数を2回偏微分するやり方?がわかりません;; y=r * sinθ x=r * cosθ とすると 合成関数の偏微分法から ∂f/∂r=cosθ*(∂f/∂x) + sinθ*(∂f/∂y) となります。 もう一回微分して ∂^2f/∂r^2= cos^2θ*(∂^2f/∂x^2) + sin^2θ* (∂^2f/∂y^2)+ 2sinθcosθ(∂^2f/∂x∂y) になります。 なんで 2回微分したときに cos^2θ とか sin^2θ とか出てくるんですか? よくわからないので くわしくおしえてほしいです;; 微分可能かどうか 微分可能 かどうか。 g(x)をR上定義された2回微分可能な関数とし f(x)を f(x)=g(x)+x^2sin(1/x) x≠0 f(x)=g(0) x=0 と定める (1)x≠0として f'(x)を求めよ (2)f(x)はx=0で微分可能であることを示し f'(0)を求めよ (3)f'(x)はx=0で微分可能でないことを示せ お願いします 変数関数の微分 変数関数の微分 この問題をどなたか解いてもらえませんでしょうか? 一晩考えましたがわかりませんでした。。。 関数 z=f(x,y) を以下のように定める。 f(x,y) = xy ― √x^2+y^2 (x,y)≠(0,0)のとき 0 (x,y)=(0,0)のとき (1) 1変数関数f(x,0)のx=0での微分関数と、 1変数関数f(0,x)のy=0での微分係数を求めなさい。 (2) r(x,y)によってxy平面上での原点(0,0)と点(x,y)の距離を表すことにする。 つまりr(x,y)=√x^2+y^2である。 実数t≠0について、(x,y)=(t,t)となる場合について考える。 lim f(t,t) ――― t→0 r(t,t) を求めなさい。 微分の問題です。 微分の問題です。 f(x,y)はR^2上の実数値C^1級関数なら、xとyについてそれぞれ偏微分可能ですか? よろしくお願いします。 微分についてわからないことがあるので教えてください 凄く基本的なことだと思いますが、何故かこんな変なことを疑問に思ってしまい、考えてもわからないので質問します。 定義では代入してから微分しても、微分してから代入しても値は同じになりますが、 例えばf(x)=x^2+3x+2 という関数があったとして f'(x)=2x+3 f(1)=6 f'(1)=5 であっていると思いますが、 f(1)=6を微分したら0になってしまい、f'(1)は0と5の2つを表すことになはらないでしょうか? 本質的には、 5はf(x)のx=1のときの傾き 0はf(1)の傾き(定数なので0) とわかるのですがf'(x)が2つ表すということが疑問に思います。 0の方が間違っているとは思いますが、どこが間違っているでしょうか。 よろしくお願いします。
お礼
回答ありがとうございました。