• ベストアンサー

微分可能関数の証明

関数f:R→Rがxバー∈Rで微分可能ならば、fはxバーで連続であることを示しなさい。 わからないので教えてください。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • Mr_Holland
  • ベストアンサー率56% (890/1576)
回答No.3

 #1です。  お礼をありがとうございます。  だいぶ苦労しているようですね。 >f':x∈R→f'(x)∈R  途中の論法もわからなかったのですが、結論のこれも、f’が実関数だということしか言ってませんよね。  ε-δ論法を使わずに、関数が連続であることを言うのであれば、   [x→a] lim f(x)=f(a)   ・・・・・☆ だということを言えばよいと思います。 http://ja.wikipedia.org/wiki/%E3%82%A4%E3%83%97%E3%82%B7%E3%83%AD%E3%83%B3-%E3%83%87%E3%83%AB%E3%82%BF%E8%AB%96%E6%B3%95#.E9.96.A2.E6.95.B0.E3.81.AE.E9.80.A3.E7.B6.9A.E6.80.A7  そこで、微分の定義式から、   f(x)-f(a)=(x-a)*A+o(x-a)  (ただし、o(x-a)は(x-a)より高位の関数。) と書くことができますから、この式から、   x→aで f(x)-f(a)→0  ⇔[x→a] lim {f(x)-f(a)}=0  ∴[x→a] lim f(x)=f(a) となり、式☆を示すことができます。  あとは、このaは任意の実数で成り立つことを言えば、fが実数全体で連続であることがいえると思います。

2007g2o22o
質問者

お礼

お礼が遅くなりました。 ありがとうございました。 おかげで助かりました。

その他の回答 (2)

  • mmk2000
  • ベストアンサー率31% (61/192)
回答No.2

あえて苦言を申し上げますが、最近、大学生さんは期末が近いせいか、レポートや課題内容をそのまま「わからないから」といって質問するパターンが非常に多いような気がします。 せめて自分の考えたところは記述するというマナーを守ってほしいと思います。

  • Mr_Holland
  • ベストアンサー率56% (890/1576)
回答No.1

 このあたりのものはいかがでしょうか。 http://www.f-denshi.com/000TokiwaJPN/10kaisk/030ksk.html の2.[2]、[3] 連続関数と微分可能な関数との関係

2007g2o22o
質問者

お礼

参考になるURLを貼って頂きまして、ありがとうございます。 URLを拝読しながらしてみたのですが、どうでしょうか? xがxバーからxバー+h(h≠)に変化したときに、関数の値はf(xバー)に変化する。 このときの平均変化率は{f(xバー+h)-f(xバー)}/hである。 h→0(xバー+h→xバー)のとき、{f(xバー+h)-f(xバー)}/h→aでの接線の傾きとなる。 極限limh→o{{f(xバー+h)-f(xバー)}/h}が存在するとき 関数f:R→Rがxバー∈Rは微分可能である。そして極限はf'(xバー)である。 するとf'が任意のxバー→∈Rが微分可能である。 つまり f':x∈R→f'(x)∈R これで連続であることを示したことになるでしょうか? ダラダラと長すぎるような気もしますし…

関連するQ&A

  • 微分可能なのに導関数が不連続?

    一般にm回微分可能でも(d^m/dx^m)f(x)は連続ではないそうですが(本で読みました。) f(x)が微分可能で、導関数f'(x)が連続でないような関数f(x)の例を教えてください。 傾きが不連続(導関数f'(x)が不連続)なのに滑らか(微分可能)ってのがどうもイメージできないので。

  • 微分可能でない関数

    微分可能でない関数について学習しているのですが、 例えば連続関数であり、かつ1点で微分可能でない関数はf(x)=|x|などが自分で考え付くことが出来たのですが、 では任意の点の有限個の点の集合、可算個の点を含む適当な集合上で微分不可能な連続関数はどのような構成が考えられますでしょうか? 宜しくお願い致します。

  • 陰関数の微分について

    陰関数の微分についてよくわからないところがあるので質問します。 R^2の開集合U上で陰関数f(x,y)=0 (f:R^2→RでfはU上C^1級)が与えられているとする。 両辺の微分を取ると、(∂f/∂x)dx+(∂f/∂y)dy=0となる。という記述がありますが、いまいち理解できません。なぜなら、f(x,y)はU上定義されている関数で微分を取ることはわかりますが、右辺の0はここでは U上恒等的に0、すなわち関数として0という意味ではないので, 右辺の微分を取って等式とするのは変だと思ったからです。 ここを納得するにはどう考えればよいのでしょうか。

  • 逆関数の微分可能の証明について

    逆関数の微分可能性についての質問なのですが 1変数において y=f(x)が微分可能(何回でも)だとして 逆関数x=g(y)が微分可能(何回でも)になる という証明は逆関数が微分可能ということを証明することで f(x)が何度でも微分可能なので逆関数も何回でも微分可能と証明することができたと言えるのでしょうか? 何回でも微分可能の何回という点を証明する方法がよくわからないのですが教えていただけないのでしょうか.

  • 関数の連続、微分、接線、積分

    関数の連続や微分可能な関数などについての理解があいまいなのですが、以下の文章に間違いがあったら指摘くださいますか? 左右両方からxがaに接近するときの微分係数が一致したら、x=aで微分可能 x=aで微分可能ならx=aで連続。  微分可能で直線じゃないならその点においての接線がある。 微分不可能な点では接線は存在しない。 積分は連続している範囲でできる。 連続していない範囲では積分できない。 連続は(数学的じゃないですが)一筆書きでかけるようなのを連続という。数学的にはイプシロンデルタ論法をつかうと思いますが今は省略します。 f(x)が範囲Mで微分可能ならf '(x)は範囲Mでさらに微分可能。これは何回でも可能で、多項式関数の場合は最終的に0になる。 たとえばf(x)=|x| はすべての実数において連続だがx=0で微分できない。 xが0にちかづくときプラスからでもマイナスからでもf(x)は0になりかつf(0)が0であるから連続 xが0に近づくときプラスからとマイナスからの接近による微分係数は順に1,-1なので、微分できない。微分できないのでx=0における接線は存在しない。 回答よろしくお願いします。

  • 関数f(x)がC∞-級関数であることの証明

    (1)f(x)が連続関数で、x≠0で微分可能かつ lim[x→+0]f'(x)=lim[x→-0]f'(x)=A (Aは実数) ならば、f(x)はx=0でも微分可能でf'(0)=Aとなることを示せ。 (2) f(x)=0 (x≦0のとき) f(x)=e^(-1/x) (x>0のとき) とするとき、f(x)はC∞-級関数であることを示せ。 *************** という問題で、(1)についてはロピタルの定理から簡単に示せるので、分からない点はありません。 (2)なんですが、x>0のとき任意のn=1,2,3,・・・に対し、{f(x)}^(n)は Σ[k=0→2n]{{a【k】}*e^(-1/x)}/x^kの形に表せます。 ∀rについてCr-級をrに関する帰納法で示したいです。 r=1のときf'(x)={e^(-1/x)}/x^2 だから1回微分可能。また、lim[x→0]f'(x)=0=f'(0)よりf'(x)は連続。 よってr=1のときにCr-級であることが証明されました。 この後、どうやっていいかわからないので教えてください。

  • 合成関数の微分

    合成関数の微分に関する問題なのですが、  f(x,y)をx=rcosθ、y=rsinθで変数変換し、f(x,y)=g(r,θ)としたとき、 ∂f/∂x、∂f/∂yを∂g/∂r,∂g/∂θで表せ。 という問題がうまく解けません。合成関数の微分の公式を用いていけばよいと思うのですが、∂g/∂r,∂g/∂θがどうやって出てくるのかがわかりません。どなたか教えていただけませんでしょうか?よろしくお願いします。

  • 変数関数の微分

    変数関数の微分 この問題をどなたか解いてもらえませんでしょうか? 一晩考えましたがわかりませんでした。。。 関数 z=f(x,y) を以下のように定める。 f(x,y) = xy ― √x^2+y^2 (x,y)≠(0,0)のとき 0 (x,y)=(0,0)のとき (1) 1変数関数f(x,0)のx=0での微分関数と、 1変数関数f(0,x)のy=0での微分係数を求めなさい。 (2) r(x,y)によってxy平面上での原点(0,0)と点(x,y)の距離を表すことにする。 つまりr(x,y)=√x^2+y^2である。 実数t≠0について、(x,y)=(t,t)となる場合について考える。 lim  f(t,t)    ――― t→0 r(t,t) を求めなさい。

  • 偏微分係数の連続性の証明

    関数  f(x,y)= {  0 if(x,y)=(0,0)        xy/√(x^2+y^2 ) otherwise } fの偏微分係数の連続性について確認してください。また、fは点(0,0)において微分可能でないことも示す。

  • 関数の連続性と微分可能性

    以前お世話になりました、大学受験生です。 数学本の中に「明らか」としか述べられていない話があって、 もやもやしているので質問させていただきます。 その文章は以下のもので、 実数全体で連続な関数f(x)が原点を除いたところで何回でも微分可能 で(c^∞級と言うらしいです)、lim[x→0]f'(x)がある実数aに 収束しているならばf(x)は原点でも微分可能であって、 またf'(x)は実数全体で連続(つまりf'(0)=a)となっている。 です。 どう証明したらよいのでしょうか。恥ずかしながら見当がつかないのです。 それから勝手に自分で進めていることなのですが、 たとえば関数e^(-1/x^2)というのがあったとして、 原点以外でc^∞級であることを既知としていれば、原点でも 微分可能であるということになるのですか。 わかる方、長くなってもよいので詳しいご教授願います。 よろしくお願いいたします。