べき級数解法で解を求める方法と計算手順

このQ&Aのポイント
  • べき級数解法を使って(Y+1)Y'-Y=Xの一般解を求める方法と計算手順を解説します。計算ミスに気付いた箇所があれば訂正してください。
  • べき級数解法での計算手順として、まずY=(a0)+(a1)X+(a2)X^2+(a3)X^3+・・・とおくと、Y'=(a1)+2(a2)X+3(a3)X^2+4(a4)X^3+・・・となります。
  • 次に、式に代入して(X+1){(a1)+2(a2)X+3(a3)X^2+4(a4)X^3+・・・}-{(a0)+(a1)X+(a2)X^2+(a3)X^3+・・・}=Xとなるようにします。係数比較を行うと、(a1)-(a0)=0、2(a1)+(a1)-(a1)=0、3(a3)+2(a2)-(a2)=0・・・となります。
回答を見る
  • ベストアンサー

べき級数解法、問題

(X+1)Y'-Y=Xの一般解をべき級数解法で求めよ。 という問いがありました。途中、級数の整理があんまりできないので、教えていただきたいです。 自分のやり方:(計算ミスがあったら、教えてください)(手書きも載っている) まず、Y=(a0)+(a1)X+(a2)X^2+(a3)X^3+・・・ Y'=(a1)+2(a2)X+3(a3)X^2+4(a4)X^3+・・・とおく、そして式に代入。(a0),(a1),(a2)は係数(anのこと) (X+1){(a1)+2(a2)X+3(a3)X^2+4(a4)X^3+・・・}-{(a0)+(a1)X+(a2)X^2+(a3)X^3+・・・}=X 係数比較: X^0:a1-a0=0 X^1:2(a1)+(a1)-(a1)=0 X^2:3(a3)+2(a2)-(a2)=0 ・・・ X^n:(n-1)(an+1)+n(an)-(an)=0を変形 (an)=-{(n-2)!/n!}(a2)になる 計算より、(a1)=(a0) (a2)=1/2 ・・・途中半端になった。 ちなみに、答えはY=(a0)(1+X)+(X+1)log(1+X)-X

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8014/17130)
回答No.1

> X^1:2(a1)+(a1)-(a1)=0 これは間違い。=1ですね。 また > (an)=-{(n-2)!/n!}(a2)になる これもn>=2のとき (an)=(-1)^n*2*{(n-2)!/n!}(a2) ですね。 (a0)=(a1)=1/2 ですから Y=(a0/2)(1+X)+(X+1)log(1+X)-X になることは容易に確認できるでしょう。この場合に定数倍は意味がないから Y=(a0)(1+X)+(X+1)log(1+X)-X でOK

kawaisoo
質問者

補足

> X^1:2(a1)+(a1)-(a1)=1です。書き損ないでした。 どうやって、(an)=(-1)^n*2*{(n-2)!/n!}(a2)ここに変形しますか? なぜ(an)=-{(n-2)!/n!}(a2)じゃないのですか? 知識不十分ですが、n>=2のとき(an)=(-1)^n*2*{(n-2)!/n!}(a2)をどうやってYの式に誘導することも教えてください。無限級数を使うはずです

その他の回答 (1)

  • f272
  • ベストアンサー率46% (8014/17130)
回答No.2

画像であなたの書いている式を判読すると a[n+1]=(-1)*(n-1)/(n+1)*a[n] から a[n+1]=(-1)*(n-1)/(n+1)*(n-2)/(n)*a[n-1] のようにやっているが a[n+1]=(-1)*(n-1)/(n+1)*(-1)*(n-2)/(n)*a[n-1] だよね。つまり a[n+1]=(-1)^2*(n-1)/(n+1)*(n-2)/(n)*a[n-1] これを,進めていくと a[n+1]=(-1)^(n-1)*(n-1)/(n+1)*(n-2)/(n)*...*(1)/(3)*a[2] 分母は(n+1)(n)(n-1)...4*3だから(n+1)!/2になるので a[n+1]=(-1)^(n-1)*2*(n-1)!/(n+1)!*a[2] これから(-1)^(n-2)=(-1)^(n)だから a[n]=(-1)^(n)*2*(n-2)!/(n)!*a[2] さらに a[n]=(-1)^(n)*2*1/n/(n-1)*a[2] a[n]=(-1)^(n)*2*(1/(n-1)-1/n)*a[2] が分かります。ここで log(1+x)=Σ[k=1:∞]((-1)^(k-1)*(1/k)(x^k)) だから (1+x)log(1+x)=Σ[k=1:∞]((-1)^(k-1)*(1/k)(x^k))+Σ[k=1:∞]((-1)^(k-1)*(1/k)(x^(k+1))) (1+x)log(1+x)=Σ[k=1:∞]((-1)^(k-1)*(1/k)(x^k))+Σ[k=2:∞]((-1)^(k-2)*(1/(k-1))(x^k)) (1+x)log(1+x)=x+Σ[k=2:∞]((-1)^(k-2)*(1/(k-1)-1/k)(x^k)) ここまでくれば簡単でしょ。

関連するQ&A

  • べき級数で解く微分方程式

    次の微分方程式の解を 式(5.1) = y(x) = Σ[i=0,∞] ( a_[i] * x^i ) のべき級数を用いて求めよ。 x (dy/dx) - y = x^k     (ただし、kは1以外の自然数) 解答 y を式(5.1)のべき級数で展開し、微分方程式に代入して係数a_iについての関係式を求める。 (1) べき級数展開から次の式を得る。      x Σ[i=0,∞] (i+1)( a_[i+1] * x^i ) - Σ[i=0,∞] ( a_[i] * x^i ) = x^k xの次数ごとに両辺の係数を比較すると、n≠kなるnについて (n-1)a_[n] = 0 となる。 ←疑問点 n≠1 (n≠k) に対して a_[n] = 0 であり、(k-1) * a_[k] = 1より y = 1/(k-1) * x^k を得る。 n=1に対しては、a_[n] = a_[1] ≠ 0でも(n-1) * a_[n] = 0となる。 実際、y = 1/(k-1) * x^k + ax (aは任意の定数) が微分方程式の解となる。 ・・・と本に書いてありますが、「疑問点」のところの比較の方法が分かりません。 まず、i が 0 から n まで変化する過程を自分で計算してみました。 i=0: x * (0+1) a_[0+1] * x^0 - a_[0] * x^0 = a_[1] * x - a_[0] i=1: x * (1+1) a_[1+1] * x^1 - a_[1] * x^1 = 2a_[2] * x^2 - a_[1] * x i=2: x * (2+1) a_[2+1] * x^2 - a_[2] * x^2 = 3a_[3] * x^3 - a_[2] * x^2 : i=n: x * (n+1) a_[n+1] * x^n - a_[n] * x^n = (n+1) a_[n+1] * x^(n+1) - a_[n] * x^n これらを使って「xの次数ごとに両辺の係数を比較する」んですよね。 しかし左辺だけでも、xの次数が1つずつズレていますよね・・・? これらと x^k を具体的にどうやって比較するのでしょうか? x^2ならx^2だけでまとめるんですか? それともx^3とx^2が混ざった形で比較するのですか(どうやってやるのか分かりませんけども)? どうか教えてください。お願いします。

  • 数学の問題

    x=Anを解に持つf(x)で、x=Anを代入すると0になりますが、n→∞でAn=1のとき f(An)の極限をn→∞にとると1になってしまいます。 詳しく書くと、 Anはnで表されていてn→∞のときAn=1です。、f(An)をnで表したときには分母のnが消えて分母が0になり、f(An)全体で0になるので、n→∞に極限をとっても0ですが、f(An)をAnで表して∞に極限をとると、1になってしまいます。 これっておかしいですよね?やはりどこか間違っているんですかね?

  • 数学の問題(極限?)

    f(x)=(n-1)x^2+2x-n ;  An={-1+√(n^2-n+1)}/(n-1) n→∞でAn=1です。 と表されるとき、 xにAnを代入して計算すれば最終的にf(An)=0/(n-1)となりnの値に関係なくf(An)=0となりますよね。    でも、 f(An)=(n-1)An^2+2An-n と表して、n→∞とするとAn=1になるので、 f(An)=(n-1)*1+2*1-n=1となってしまいませんか?? f(x)をnで表したときはどんなnでも0なのに、Anで表したときの極限が1になってしまうのはおかしくないですか??

  • べき級数について。

    AnとBnxは実数とする 「ΣAn・x^n = ΣBn・x^n  (n=1から∞までのべき級数で、それぞれ、ある、同じ収束半径のもとで絶対収束している) ⇒An = Bn for 任意のn」 が成り立つ条件を調べて、考えていますが、詳しい本が見つからず困っています。 直接または参考文献など分かる方、教えてください。

  • 微分方程式の級数解

    次の微分方程式の解を 式(5.1) = y(x) = Σ[i=0,∞] ( a[i] * x^i ) のべき級数を用いて求めよ。      x^2 * (dy/dx) - y = x^2 解答 べき級数展開から次の式を得る。      x^2 * Σ[i=0,∞] (i+1)( a[i+1] * x^i ) - Σ[i=0,∞] ( a[i] * x^i ) = x^2 xの次数ごとに両辺の係数を比較すると、      a[0] = 0      a[1] = 0      a[2] = -1      a[n] = (n-1) a[n-1]     (n>=3) なる関係式を得る。これより、n>=3について      a[n] = (n-1) ! * a[2] = -(n-1) ! となる。したがって、微分方程式の級数解として      y = -x^2 * Σ[i=0,∞] (i+1) ! * x^i     ←この式の求め方が分かりません を得る。 ・・・と本に書いてありますが、      y = -x^2 * Σ[i=0,∞] (i+1) ! * x^i の求め方が分かりません。 a[n] = -(n-1) !まで分かっているので、後は代入するだけだと思っていたのですが、やってみると答えが合いません。例えば、      x^2 * Σ[i=0,∞] (i+1)( a[i+1] * x^i ) - Σ[i=0,∞] ( a[i] * x^i ) = x^2 に      a[n] = -(n-1) !      a[i] = -(i-1) !      a[i-1] = -(i-2) !      a[i+1] = -i ! など各種取り揃えておいて代入すると      x^2 * Σ[i=0,∞] (i+1)( a[i+1] * x^i ) - Σ[i=0,∞] ( a[i] * x^i ) = x^2      x^2 * Σ[i=0,∞] (i+1)( -i ! * x^i ) - Σ[i=0,∞] { -(i-1) ! * x^i } = x^2 (i+1)i ! = (i+1) ! と考えれば      x^2 * Σ[i=0,∞] -(i+1) ! * x^i + Σ[i=0,∞] (i-1) ! * x^i = x^2      -x^2 * Σ[i=0,∞] (i+1) ! * x^i + Σ[i=0,∞] (i-1) ! * x^i = x^2 この前半の項が奇しくもこの本の答え      y = -x^2 * Σ[i=0,∞] (i+1) ! * x^i と同じになります。 ということは、この後半の項はゼロになるべきということですか?でも、ならないですよね? それとも私の計算が間違っているのでしょうか? どうか正しい解き方を教えてください。お願いします。

  • フーリエ級数の問題です

    f(x)= x (-π<= x <=π) のフーリエ級数を用いて無限級数和            (1) Σ[n=1~∞] Σ 1/n^2 (2) Σ[n=1~∞] (-1)^n/n^2        を求めよという問題ですが、フーリエ級数は求められて       f(x)=   2Σ[n=1~∞] {(-1)^n+1}*sin(nx)/n       になるけれど、xに何を代入すればいいかわかりません。御回答よろしくお願いします。

  • 微分方程式の級数解の求め方

    微分方程式の級数解の求め方について教えてください。 y' = a^2・y, y(0) = 1 の解が y = f(x) = Σ[n=0→∞]c(n)・x^n であるとします。 この場合に、係数 c10 値と、f(1) の値を求めたいと思います。 以下のように辿ってみましたが、途中でわからなくなりました。 解の式を微分して、 y' = c1 + 2c2・x + 3c3・x^2 + ... 元の方程式を展開すると、 y' = a^2( c0 + c1・x + c2・x^2 + ... ) 両式と y(0) = 1 より、 c1 = c0・a^2 = a^2 2c2・x = c1・x → c2 = c1・x / 2・x = c1 / 2 → a^2 / 2! 3c3・x^2 = c2・x^2 → c3 = c2・x^2 / 3・x^2 = c2 / 3 → a^2 / 3! ゆえに c(n) = a^2 / n! このあと c10 を算出するために上式の a の値は?などとわからなくなりました。 ここまでに誤りがないか、このあとをどうすればよいか、教えていただけないでしょうか。 よろしくお願いします。

  • 定数係数以外の2階常微分方程式の解

    次の問題の解法が分かりません。 次の常微分方程式の一般解を求めよ。 (1)y''+4x*y'+(4x^2-2)y=0 (2)x^2*y''-2y=x 定数係数であれば解けるのですが、このようにxを含む係数の場合どうすればいいのですか? 調べたら級数展開法というものが出てきたのですが途中の計算がよくわかりませんでした。 級数展開法ではない方法で解けるのですか?

  • フーリエ級数の問題

    f(x)は周期2πをもつとする。 f(x)のフーリエ級数を求める。 (1)f(x)=x(-(π/2)<x<(π/2)),π-x((π/2)<x<(3π/2)),  この条件でフーリエ級数を求めると、  グラフを描くと奇関数になるので、a0=0,an=0, bn=(4/nの2乗π)sin(π/2)n したがってフーリエ級数は、 f(x)=(4/π){sinx-(1/9)sin3x+(1/25)sin5x-・・・} でいいのでしょうか? (2)f(x)=xの2乗(-(π/2)<x<(π/2)),π/4((π/2)<x<(3π/2)),  グラフを描くと、偶関数になったので、bn=0, a0=(πの2乗)/6, an=(2/π){(π/nの2乗)cos(π/2)n-(2/nの3乗)sin(π/2)n} よって、  f(x)=((πの2乗)/6)+(2/π){-2cosx-(π/4)cos2x+(2/27)          cos3x+・・・} これでいいのでしょうか?  ご回答よろしくお願いします。

  • 級数の極限値

    次の級数の極限値について、求め方を教えてください。 lim{x→+0,y→1-0}Σ{n=0,∞}y^n*sin((2n+1)x)/(2n+1) 値は x と y の近づき方によって変わるようです。 sin(a)≒a とみなし 与式≒lim{x→+0,y→1-0}Σ{n=0,∞}y^n*x =lim{x→+0,y→1-0}x/(1-y) となるかと思ったのですが、与式を計算してみると x/(1-y)=1 の時の値は 0.55 位でした。 ※その計算が間違いという可能性もあります。 正しい求め方はどうするのでしょうか? なお、与式=0.5 とした時の x と y の関係を求めるのが最終目的なんです。