• ベストアンサー
  • 困ってます

微分方程式の級数解の求め方

微分方程式の級数解の求め方について教えてください。 y' = a^2・y, y(0) = 1 の解が y = f(x) = Σ[n=0→∞]c(n)・x^n であるとします。 この場合に、係数 c10 値と、f(1) の値を求めたいと思います。 以下のように辿ってみましたが、途中でわからなくなりました。 解の式を微分して、 y' = c1 + 2c2・x + 3c3・x^2 + ... 元の方程式を展開すると、 y' = a^2( c0 + c1・x + c2・x^2 + ... ) 両式と y(0) = 1 より、 c1 = c0・a^2 = a^2 2c2・x = c1・x → c2 = c1・x / 2・x = c1 / 2 → a^2 / 2! 3c3・x^2 = c2・x^2 → c3 = c2・x^2 / 3・x^2 = c2 / 3 → a^2 / 3! ゆえに c(n) = a^2 / n! このあと c10 を算出するために上式の a の値は?などとわからなくなりました。 ここまでに誤りがないか、このあとをどうすればよいか、教えていただけないでしょうか。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数305
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

y'=a^2y y(0)=1 y=f(x)=Σ_{n=0~∞}c(n)・x^n 解の式を微分して, y'=Σ_{n=1~∞}nc(n)・x^{n-1} y'=Σ_{n=0~∞}(n+1)c(n+1)・x^n=c(1)+2c(2)x+3c(3)x^2+… 元の方程式を展開すると, y'=Σ_{n=0~∞}a^2・c(n)x^n y'=a^2(c(0)+c(1)x+c(2)x^2+…) y'=a^2・c(0)+a^2・c(1)x+a^2・c(2)x^2+… 両辺とy(0)=1より, c(0)=1 (n+1)c(n+1)=a^2・c(n) だから 「2c2・x=c1・x」は誤りで「2c2・x=a^2・c1・x」が正しい 「3c3・x^2=c2・x^2」は誤りで「3c3・x^2=a^2・c2・x^2」が正しい c(n+1)=a^2・c(n)/(n+1) だから ある自然数nに対して c(n)=a^{2n}/n! を仮定すると c(n+1)=a^2{a^{2n}/n!}/(n+1)=a^{2(n+1)}/(n+1)! だから 全ての自然数に対して c(n)=a^{2n}/n! だから 「c(n)=a^2/n!」は誤りで「c(n)=a^{2n}/n!」が正しい c(10)=a^{20}/10! f(1)=Σ_{n=0~∞}a^{2n}/n! f(1)=Σ_{n=0~∞}{(a^2)^n}/n! f(1)=e^{a^2} ゆえに c(10)=a^{20}/10! f(1)=e^{a^2}

共感・感謝の気持ちを伝えよう!

質問者からの補足

教えていただき、ありがとうございます。 計算ミスは、、恥ずい。。 特に f(1) の方がよくわかっていなかったようです。助かりました。 後出しで申し訳ありませんが、よろしければお教えください。 上の方程式と解から、c(10) = 0 と f(1) = e^(1/3) を導くことは可能でしょうか。 出来るとして経過が経過が全くわからず。他に条件などが必要なのかも知れないのですが。

関連するQ&A

  • 微分方程式の級数解

    次の微分方程式の解を 式(5.1) = y(x) = Σ[i=0,∞] ( a[i] * x^i ) のべき級数を用いて求めよ。      x^2 * (dy/dx) - y = x^2 解答 べき級数展開から次の式を得る。      x^2 * Σ[i=0,∞] (i+1)( a[i+1] * x^i ) - Σ[i=0,∞] ( a[i] * x^i ) = x^2 xの次数ごとに両辺の係数を比較すると、      a[0] = 0      a[1] = 0      a[2] = -1      a[n] = (n-1) a[n-1]     (n>=3) なる関係式を得る。これより、n>=3について      a[n] = (n-1) ! * a[2] = -(n-1) ! となる。したがって、微分方程式の級数解として      y = -x^2 * Σ[i=0,∞] (i+1) ! * x^i     ←この式の求め方が分かりません を得る。 ・・・と本に書いてありますが、      y = -x^2 * Σ[i=0,∞] (i+1) ! * x^i の求め方が分かりません。 a[n] = -(n-1) !まで分かっているので、後は代入するだけだと思っていたのですが、やってみると答えが合いません。例えば、      x^2 * Σ[i=0,∞] (i+1)( a[i+1] * x^i ) - Σ[i=0,∞] ( a[i] * x^i ) = x^2 に      a[n] = -(n-1) !      a[i] = -(i-1) !      a[i-1] = -(i-2) !      a[i+1] = -i ! など各種取り揃えておいて代入すると      x^2 * Σ[i=0,∞] (i+1)( a[i+1] * x^i ) - Σ[i=0,∞] ( a[i] * x^i ) = x^2      x^2 * Σ[i=0,∞] (i+1)( -i ! * x^i ) - Σ[i=0,∞] { -(i-1) ! * x^i } = x^2 (i+1)i ! = (i+1) ! と考えれば      x^2 * Σ[i=0,∞] -(i+1) ! * x^i + Σ[i=0,∞] (i-1) ! * x^i = x^2      -x^2 * Σ[i=0,∞] (i+1) ! * x^i + Σ[i=0,∞] (i-1) ! * x^i = x^2 この前半の項が奇しくもこの本の答え      y = -x^2 * Σ[i=0,∞] (i+1) ! * x^i と同じになります。 ということは、この後半の項はゼロになるべきということですか?でも、ならないですよね? それとも私の計算が間違っているのでしょうか? どうか正しい解き方を教えてください。お願いします。

  • べき級数で解く微分方程式 2問目

    次の微分方程式の解を 式(5.1) = y(x) = Σ[i=0,∞] ( a_[i] * x^i ) のべき級数を用いて求めよ。      x^2 * (dy/dx) - y = x^2 解答 べき級数展開から次の式を得る。      x^2 * Σ[i=0,∞] (i+1)( a_[i+1] * x^i ) - Σ[i=0,∞] ( a_[i] * x^i ) = x^2 xの次数ごとに両辺の係数を比較すると、      a[0] = 0      a[1] = 0      a[2] = -1      a[n] = (n-1) a[n-1]     (n>=3) なる関係式を得る。これより、n>=3について      a[n] = (n-1) ! * a[2] = -(n-1) !     ←この式を求めたいです となる。したがって、微分方程式の級数解として      y = -x^2 * Σ[i=0,∞] (i+1) ! * x^i を得る。 ・・・と本に書いてあります。      a[n] = (n-1) ! * a[2] の導き方が分かりません。 自力で      x^2 * Σ[i=0,∞] (i+1)( a_[i+1] * x^i ) - Σ[i=0,∞] ( a_[i] * x^i ) = x^2 が      -a[0] - a[1] * x + Σ[i=2,∞] [ { (i+1) * a_[i-1] - a[i] } * x^i ] = x^2 になることは分かりました。それで、 i=0: -a[0] = 0 a[0] = 0 i=1: -a[1]x = 0x a[1] = 0 i=2: (a[1] - a[2])x^2 = 1x^2 (0 - a[2]) = 1 a[2]) = -1 i=3: { (3-1) a[2] - a[3]}x^3 = 0x^3 2a[2] - a[3] = 0 2(-1) - a[3] = 0 -2 - a[3] = 0 - a[3] = 2 a[3] = -2 i=4: { (4-1) a[3] - a[4]}x^4 = 0x^4 3a[3] - a[4] = 0 3(-2) - a[4] = 0 -6 - a[4] = 0 - a[4] = 6 a[4] = -6 i=n: { (n-1) a[n-1] - a[n]}x^n = 0x^n (n-1) a[n-1] - a[n] = 0 - a[n] = - (n-1) a[n-1] a[n] = (n-1) a[n-1] ここまでは出来ましたけど、この式を使ってn>=3の場合を足していったら      a[n] = (n-1) ! * a[2] になるんですよね? ( a[2] = -1 と分かっているのでその次の式はいいとして、) この階乗はどうやって出せばいいんでしょうか? i=3 と i=4 を見ていると階乗になりそうなのは分かります。 どうか教えてください。お願いします。

  • 微分方程式の級数解 a[0] * x^n

    微分方程式      (d^2 y)/(dx^2) + (1/x) (dy/dx) - (n^2/x^2) y = 0   (x>0) の級数解を、次の問いに従って求めよ。 ただし、n>0とする。 (1) 級数解を      y(x) = x^c * Σ[i=0,∞] a[i] * x^i とおいたとき、指数cはどのように求まるか。ただし、a[0] ≠ 0であるとする。 解答 級数解を      y(x) = x^c * Σ[i=0,∞] a[i] * x^i とおいて、項別に微分すると      dy/dx = x^c * Σ[i=0,∞] (c+i)a[i] * x^(i-1)      (d^2 y)/(dx^2) = x^c * Σ[i=0,∞] (c+i)(c+i-1)a[i] * x^(i-2) これを微分方程式に代入して      x^c * Σ[i=0,∞] (c+i)(c+i-1)a[i] * x^(i-2)       + (1/x) * x^c * Σ[i=0,∞] (c+i)a[i] * x^(i-1)        + (n^2/x^2) * x^c * Σ[i=0,∞] a[i] * x^i = 0      x^c * Σ[i=0,∞] (c+i)(c+i-1)a[i] * x^(i-2)       + x^c * Σ[i=0,∞] (c+i)a[i] * x^(i-2)        + n^2 * x^c * Σ[i=0,∞] a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)(c+i-1) + (c+i) - n^2 } a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] [ (c+i) { (c+i-1) + 1} - n^2 ] a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)(c+i-1+1) - n^2 } a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)(c+i) - n^2 } a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)^2 - n^2 } a[i] * x^(i-2) = 0 x^(c-2)の係数について      (c^2 - n^2)a[0] = 0 でなければならない。 したがって、a[0] ≠ 0の条件から      c^2 = n^2      c = ±n と定まる。 (2) 一般解を級数解で求めよ。 解答 x^(i+c-2) (i=1,2,3,...)の係数について      { (c+i)^2 - n^2 } = 0 でなければならない。 c=nのとき、      { (c+i)^2 - n^2 } = (n+i)^2 - n^2                = 2ni + i^2 ≠ 0 であるから、a[i] = 0 (i=1,2,3,...)となる。 すなわち、これに対応する解は      a[0] * x^n     ←これが分かりません ・・・とまだまだ続くのですが、a[0] * x^nになる理由が分かりません。 自分で考えてみますと、      Σ[i=0,∞] { (c+i)^2 - n^2 } a[i] * x^(i+c-2) = 0 で、(i=1,2,3,...)はすべてa[i] = 0になると言ってるのだから、残るはi=0のみ。 i=0:      { (c+0)^2 - n^2 } a[0] * x^(0+c-2) = 0      { c^2 - n^2 } a[0] * x^(c-2) = 0 しかも、c=nなので      { n^2 - n^2 } a[0] * x^(n-2) = 0      { 0 } a[0] * x^(n-2) = 0 ・・・x^(n-2)の係数について係数は0という結果になりました。これでいいんですか??? たとえ、{ (c+i)^2 - n^2 } = 2ni + i^2としても、i=0なので0ですよね? このa[0] * x^nはどうやって導いたのでしょうか? 教えてください。お願いします。

その他の回答 (1)

  • 回答No.2

c(10)=a^{20}/10! f(1)=e^{a^2} c(10)=0ならばa=0となってf(1)=1≠e^{1/3} f(1)=e^{1/3}ならばa^2=1/3となってc(10)=1/(3^{10}10!)≠0 ∴ c(10)=0とf(1)=e^{1/3}を同時に満たすaは存在しません

共感・感謝の気持ちを伝えよう!

質問者からのお礼

先に教えていただいた箇所までは納得できるようになりました。 こちらの方は自分も考えていたのですが、同じ結論になるようです。 (まだ教えていただいた式をなぞる程度ですが) 出題者にも意図を確認してみます。 ありがとうございました。

関連するQ&A

  • べき級数で解く微分方程式

    次の微分方程式の解を 式(5.1) = y(x) = Σ[i=0,∞] ( a_[i] * x^i ) のべき級数を用いて求めよ。 x (dy/dx) - y = x^k     (ただし、kは1以外の自然数) 解答 y を式(5.1)のべき級数で展開し、微分方程式に代入して係数a_iについての関係式を求める。 (1) べき級数展開から次の式を得る。      x Σ[i=0,∞] (i+1)( a_[i+1] * x^i ) - Σ[i=0,∞] ( a_[i] * x^i ) = x^k xの次数ごとに両辺の係数を比較すると、n≠kなるnについて (n-1)a_[n] = 0 となる。 ←疑問点 n≠1 (n≠k) に対して a_[n] = 0 であり、(k-1) * a_[k] = 1より y = 1/(k-1) * x^k を得る。 n=1に対しては、a_[n] = a_[1] ≠ 0でも(n-1) * a_[n] = 0となる。 実際、y = 1/(k-1) * x^k + ax (aは任意の定数) が微分方程式の解となる。 ・・・と本に書いてありますが、「疑問点」のところの比較の方法が分かりません。 まず、i が 0 から n まで変化する過程を自分で計算してみました。 i=0: x * (0+1) a_[0+1] * x^0 - a_[0] * x^0 = a_[1] * x - a_[0] i=1: x * (1+1) a_[1+1] * x^1 - a_[1] * x^1 = 2a_[2] * x^2 - a_[1] * x i=2: x * (2+1) a_[2+1] * x^2 - a_[2] * x^2 = 3a_[3] * x^3 - a_[2] * x^2 : i=n: x * (n+1) a_[n+1] * x^n - a_[n] * x^n = (n+1) a_[n+1] * x^(n+1) - a_[n] * x^n これらを使って「xの次数ごとに両辺の係数を比較する」んですよね。 しかし左辺だけでも、xの次数が1つずつズレていますよね・・・? これらと x^k を具体的にどうやって比較するのでしょうか? x^2ならx^2だけでまとめるんですか? それともx^3とx^2が混ざった形で比較するのですか(どうやってやるのか分かりませんけども)? どうか教えてください。お願いします。

  • 非線形微分方程式の初期値の決め方

    f(x),f '(x),g(x), g'(x)についての非線形微分方程式を数値計算しようと思います。 得るべき解曲線などはあらかじめわかっているとします。 初期条件としてf(0)=0,g(0)=1というものだけがわかっているとします。 このとき、得るべき解曲線を得るためにはどのようにしてf '(x),g'(x)の初期値を決定すればよいのでしょうか? 現在自分が考えてやってみてるのはf '(x),g'(x)をx=0まわりの級数展開で近似して、その近似した式を元の微分方程式に代入して、展開係数の関係式を求めるという方法です。 これでやっているのですがうまくいきません。 教科書レベルでよくあるのは初期値や境界値がわかっていて、微分方程式を解くというものだと思うのですが、 先に解曲線だけが得られているとき、その解曲線を得るような初期値を決めようとするときはどうすればいいのでしょうか?(非線形なのでちゃんとした式で記述できる解ではありません) 教えてください。お願いします

  • 微分方程式の一般解を求めたいです。

    dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 ********************************************* これはf(x) = ad(x) - bc(x) g(x) = -d(x) として答えがでました。 ********************************************* (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 dz/dx = -2z/x -x という式になると思うんですけど一般解をどう導き出していいのか分かりません。よろしくお願いします。

  • 微分方程式について

    解析で習う、微分方程式についてですが、 一般解を求めますよね? そのときに、特殊解を求めますよね? その特殊解の置き方(例えば、f(x)= Ax^2+Bx+cなど)は式によって、どう置けばいいか わかりますか? 教えて下さい。

  • 微分方程式の問題で、もう一問質問です。

    微分方程式の問題で、もう一問質問です。 aを実数の定数とする。 条件u(0)=1、u’(0)=aを満たす微分方程式 u”(x)+(1-x^2)u(x)=0 の解u(x)に対して f(x)=u’(x)+xu(x) とおく。 (1)f(0)を求めなさい。 (2)f’(x)-xf(x)=0が成り立つことを示しなさい。 (3)f(x)を求めなさい。 (4)解u(x)がすべてのxに対して正の値をとるものとする。このとき、定数aの値と対応する解u(x)の組を求めなさい。 という問題です。 (1)、(2)、(3)は解けたのですが、(4)の解き方がわかりません。 よろしくお願いします。 複素関数1問と微分方程式2問、続けて質問させていただきました。 ご教授願います。

  • 4階の微分方程式の解き方を教えてください!

    問題で与えられる微分方程式は画像として添付しました。 (1) f(x)=0 のとき、この微分方程式の一般解 (2) f(x)=sinx のとき、この微分方程式の一般解 それぞれの求め方を教えていただけませんか? 自分で計算した結果 (1)y=(C1x+C2)cos2x+(C1x+C2)sin2x (A,Bは任意定数)となりました。 間違っているでしょうか?詳しい一般解の導き方を教えてください (2)特殊解をどのようにおけばいいのか分かりません  おき方と解法を教えていただきたいです

  • 微分方程式

    問題を解いていて少し疑問に思ったので質問させてください。 u=u(t)を未知関数として A(du/dt) + B*u = E*sin(ωt) について、一般解を求め、その後初期条件u(0)=u0のもとで解け。 ただし、A,B,E,ωは正定数とする。 上記のような問題なんですけど、これは一階微分方程式ですよね? 一般解は、二階微分方程式では特性方程式によって求めた基本解と、未定係数法で求めた特殊解を重ね合わせて作るという印象があります。 このような一階微分方程式の場合はどのように解けばいいですか? 二階の時と同じように解いてよいならば、特性方程式の解から基本解を作る時など、二階微分方程式の時と同じようにやってよいものか疑問です。 特殊解も未定係数法もつかってよいのでしょうか。 詳しい方いましたら教えてください。

  • グリーン関数による微分方程式の解ζ=a-x?

    次の微分方程式の解を設問に従ってグリーン関数を使って求めよ。      (d^2 y)/(dx^2) = -xe^x ただし、xの変域 0 <= x <= aの範囲で考えるものとし、x=0およびx=aにおいて、いずれもy=0なる境界条件に従うものとする。 (1) 次の斉次微分方程式の一般解を求めよ。      (d^2 y)/(dx^2) = 0 解答 2回積分を繰り返して      y = c1x + c2 (2) 境界条件を満足するグリーン関数G(x,ζ)を求めよ。 解答 x=0でy=0なる境界条件を満足する解をy1(x)=c1xとおく。 同様に、x=aでy=0なる境界条件を満足する解をy2(x)=c2(a-x)とおく。      A=c1ζ(-c2) - c1c2(a-ζ)       =-c1c2a であるから、グリーン関数G(x,ζ)は次のように求まる。 (場合分け) G(x,ζ) = -{ c1xc2(a-ζ) }/(-c1c2a) = (x/a) * (a-ζ)          :x <= ζ G(x,ζ) = -{ c1ζc2(a-x) }/(-c1c2a) = (ζ/a) * (a-x)          :x >= ζ (3) グリーン関数G(x,ζ)を用いて非斉次微分方程式      (d^2 y)/(dx^2) = -xe^x の解を求めよ。 解答 r(x) = xe^xであるから、非斉次微分方程式の解は次のように求まる。 y = ∫[0,a] G(x,ζ)ζe^(ζ) dζ = ∫[0,x] (ζ/a) * (a-x)ζe^(ζ) dζ + ∫[x,a] (x/a) * (a-ζ)ζe(ζ) dζ ここで、 ∫[0,x] ζ^2 * e^(ζ) dζ = (x^2 - 2x + 2)e^x - 2 および ∫[x,a] (a-ζ)ζe^(ζ) dζ = (x^2 - ax - 2x + a + 2)e^x + (a-2)e^a であるから、解は次のように求まる。 y = { (a-x)/a } * { (x^2 - 2x + 2)e^x - 2 }           ←この(a-x)はどこから?  + (x/a) * { (x^2 - ax - 2x + a + 2)e^x + (a-2)e^a } = (-x+2)e^x + (x/a) * (a-2)e^a + 2(x/a - 1) ・・・という問題なんですけど、上記の(a-x)はどこから来たのですか? (3)の解答の∫[0,x] (ζ/a) * (a-x)ζe^(ζ) dζ では、分子がζになっています。 ということはζ=(a-x) っぽいんですが、そんな式はどこにも見つかりません。 どうやって、この(a-x)を得たんでしょうか? 昼からずっと考えていますけど、分かりません。 どうか教えてください。お願いします。

  • 微分方程式の問題

    関数y=f(x)が微分方程式 y(d²y/dx²)-(dy/dx)²+y²=0 を満たすとき、この微分方程式の一般解はどうなりますか?

  • 微分方程式の解き方

    自分の趣味で、{f(x)}^2-f'(x)=0 という微分方程式が解けるかどうかやってみました。 解答 (1) f(x)=0は、与えられた微分方程式を満たす。 (2) f(x)=a (aは0以外の任意の実数の定数)は与えられた微分方程式を満たさないのでf(x)≠0、f'(x)≠0とする。 {1/f(x)}^2=1/f'(x)…(A) {1/f(x)}'=-f'(x)/{f(x)}^2 より {-1/f(x)}'=1とすると、{-1/f(x)}'=f'(x)/{f(x)}^2 f'(x)/{f(x)}^2=1 1/{f(x)}^2=1/f'(x) よって(A)と同じ式になる。 なので{-1/f(x)}'=1の両辺を積分して -1/f(x)=x+C (Cは任意定数) f(x)=-1/(x+C) となる。 (1),(2)より、一般解はf(x)=-1/(x+C)、特殊解はf(x)=0である。 これでOKでしょうか? この解き方が正しいか教えていただきたいですm(__)m