級数 C^n級 C^∞級 疑問

このQ&Aのポイント
  • C^n級とC^∞級の違いや級数の性質についての疑問を持っています。
  • 剰余項についての理解や級数展開の打ち切り点について疑問を抱いています。
  • C^1級関数の例として、y=|x|^2が適切かどうかについての疑問を持っています。
回答を見る
  • ベストアンサー

級数

級数 C^n級 C^∞級 疑問 C^n級とは、n階微分可能な関数を意味すると認識しています。 C^∞級とは、n階以上微分可能な関数のことを指して言うのでしょうか? C^n級とC^∞級の違いはなんでしょうか? 剰余項について、 e^x=Σ[n=0~∞]((x^n)/(n!))→A e^x=1+x+(1/2!)x^2+・・・+(1/n!)x^n+R(n+1)→B AとBが等価なのが理解できません。 AはΣの範囲が∞です。Bは任意の自然数nです。 Bは任意の自然数nまで級数展開して、それ以降を剰余項で表しています。 Bは無限級数展開可能であるのに、n+1で打ち切っているのが理解出来ない点です。 C^1級関数の例として、y=|x|^2は適切でしょうか? y=|x|はx=0で微分可能でありません。 つまり、y=|x|はC^0級だと認識しています。 そこで、y=|x|^2はx=0で一階微分できるので、C^1級と考えました。 この考えはおかしいでしょうか? 以上、ご回答よろしくお願い致しますm(_ _)m

  • RY0U
  • お礼率40% (436/1071)

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.6

> C2 ⊂ C3 ⊂ C4 ⊂ … > C4はC3を含む,C3はC2を含む… > ではないですか? 3階連続的微分可能な関数は、2階連続的微分可能でもあります。 3回微分できるためには、2回微分できてないと駄目ですからね。 つまり、f∈C3 ⇒ f∈C2 です。逆は、成立つとは限りません。 それって、C3 ⊂ C2 ってことですよね。 たくさん微分できるほうが、条件がきつく、集合は小さいのです。 そこ、ひっかかる場所ですか?

RY0U
質問者

お礼

ご回答ありがとうございます。 仰る通りですね。理解できました。 剰余項の評価に関して新しく質問させて頂きますので、 ご回答頂ければ幸いです。

その他の回答 (6)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.7

A No.4 は無視して再質問するってことですかね。 そいつは残念。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.5

三点め: |x|の2乗 は、実関数としては、xの2乗 と同じですから、 C1級でもありますが、更にC∞級でもあります。 C1とC∞の関係については、一点めで書いたとおりです。 |x|の2乗 を複素関数と見る場合には、 x=0 で一回も微分できませんから、 C0級(連続関数)ということになります。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.4

二点め: A と B が同じになるのは、lim[n→∞]R(n+1) = 0 だからです。 なぜかって? そうなる場合だけ、関数が巾級数展開可能だからです。 limR(n+1) = 0 となる係数列が無ければ、巾級数展開不能で、 A が収束しないだけです。そのような関数もあります。 B を有限項で打ち切っていることについては、 打ち切ったことで生じた誤差こそが、剰余項なのです。 それが 0 に収束しなければならないということ。 巾級数に限らず、級数の和を考えるときには、 部分和の極限を考えるものでしたね?

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.3

一点め: C2級は、(少なくとも)2回微分できて、2階導関数が連続、 C3級は、(少なくとも)3回微分できて、3階導関数が連続、 Cn級は、(少なくとも)n回微分できて、n階導関数が連続です。 C2 ⊃ C3 ⊃ C4 ⊃ … なので、 「n回微分できて」というより、「n回以上微分できて」が正しい。 それに対し、C∞級は、何回でも微分できて、各階導関数が連続です。 ∞階導関数というものが存在する訳ではありませんから、 「何回でも」というところがミソです。

RY0U
質問者

補足

ご回答ありがとうございます。 巾級数展開可能の場合に同じになるのですね。 つまり、剰余項R(n+1)がlim[n→∞]R(n+1) = 0になれば、 e^x=Σ[n=0~∞]((x^n)/(n!))と表せるのですね。 Rは実際(1/((n+1)!))なので、0に収束すると理解できます。 よって、e^xは巾級数展開可能であると理解したのですが、e^xの場合lim[n→∞]R(n+1) における Rはどのように計算(評価)されるのでしょうか? 剰余項に関して、 R(n+1)やR(x^(n+1))などと表記されるようですが、なにか 違いはありますか? C2 ⊃ C3 ⊃ C4 ⊃ …について、 C2はC3を含む,C3はC4を含む… と理解したのですが、 C2 ⊂ C3 ⊂ C4 ⊂ … C4はC3を含む,C3はC2を含む… ではないですか? お手数をお掛けしますが、何卒ご回答よろしくお願い致します。 ご回答のおかげでなんとなくですが理解できてきました。

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

参考URLに詳しく載っていますのでお読み下さい。 要するに(n+1)項以降が余剰項(表現法は色々存在する)で置き帰られることについては マクローリンの定理とマクローリン級数展開の関係でしょう(テーラーの定理とテーラー級数展開の関係も同様)。

参考URL:
http://www.f-denshi.com/000TokiwaJPN/10kaisk/040ksk.html
RY0U
質問者

補足

ご回答ありがとうございます。 URL読んで見ました。 C^∞級を無限階微分可能と書いてありますが、 これは正しい主張ですか? 前回頂いた回答では、無限階微分なんてと 指摘されました・・・

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

え? 「C^n級とは、n階微分可能な関数を意味すると認識しています。」 がすでに間違ってる. 条件が足りない. まあ「C^∞級とは、n階以上微分可能な関数のことを指して言うのでしょうか?」という疑問も無意味だけどね. いったいどこから「n」が出てきたのか.

関連するQ&A

  • フーリエ級数について

    次の問題を解いてください。 f(x)を区間-π≦x≦πで連続かつf(-π)=f(π)をみたし、その導関数f'(x)が区分的に連続な関数とする。f(x)が、 F(x)=a_0/2+Σ[n=1,∞](a_n cos(nx)+b_n sin(nx)) とフーリエ級数に展開されるとき、以下の問いに答えよ。 (1)f'(x)をフーリエ級数に展開したときの展開係数をa_n,b_nを用いて表せ。 (2)(1)式の右辺をxで微分し(フーリエ級数の項別微分)、これを(1)と比較せよ。 くわしくお願いします。

  • 級数展開 剰余項 計算(評価)

    級数展開 剰余項 計算(評価) e^xの巾級数展開について、 剰余項R(n+1)がlim[n→∞]R(n+1) = 0になれば、 e^x=Σ[n=0~∞]((x^n)/(n!))と表せることは理解できました。 Rの係数?は実際(1/((n+1)!))となるからe^xは巾級数展開可能 であると理解したのですが、e^xの場合lim[n→∞]R(n+1) は具体的に どのように計算(評価)されるのでしょうか? また、剰余項に関して、 R(n+1)やR(x^(n+1))などと表記されるようですが、なにか 違いはありますか? それぞれの表現について教えて頂けないでしょうか? また、C^ω級は級数展開可能である関数を表す場合に用いられると 理解したのですが、C^ω級は無限級数展開でも有限級数展開 (有限級数展開の例が思いつきませんが・・・)でもどちらでも 使用して良いのでしょうか? また、C^ω級はテーラー展開の場合(x=0で級数展開できない場合)でも 使用して良いのでしょうか? ご回答よろしくお願い致します。

  • 無限級数 C^∞級 意味

    無限級数 C^∞級 意味 マクローリン展開を勉強していてちょっと分からない点が あるので質問させて下さい。 無限級数とは、Σ[k=1~∞]akのような級数の事だと認識しています。 因みに、級数とは数列a1,a2・・・akを加法で結んだものだと認識しています。 C^∞級とは、f(x)無限階微分可能かつf^∞(x)が連続である事だと認識しています。 上記認識で正しいでしょうか? また、マクローリン展開の余剰項が理解できていないので教えて下さい。 e^xのマクローリン展開すると、 e^x=1+x+(1/2!)x^2+・・・+(1/n!)x^n e^x=Σ[n=0~∞]((x^n)/(n!)) となります。 n次以上の余剰項をどのように表してよいか分からないので すが、余剰項について詳しく教えて頂けないでしょうか? 以上、よろしくお願い致します。

  • フーリエ級数について

     こんにちは。フーリエ級数展開について質問です。質問は以下の二つです。よろしくお願いします。 (1) 式(*)を使って任意の連続なf(x,y)に収束させる事ができるのでしょうか。ただし、f(x,y)は f(x-nω,y-nω)=f(x,y) を満たすような関数です。 nは自然数、ωはf(x,y)の基本周波数である。 f(x,y)=A_0+Σ(n=1→n=∞) { A_n sin(nωxcos(θ_n)-nωysin(θ_n)+a_n)+B_n sin(nωxsin(θ_n)+nωycos(θ_n)+b_n) }・・・(*) (*)のシグマの中は A_n sin(nωx+a_n)+B_n sin(nωy+b_n) ・・・(*') をθ_n回転させた物です。(*')だけでは回転したものは描けなさそうに思えたので。一応すべてのnに関して互いに直交しているとは思います。 (2) 普通、フーリエ級数展開と言えばsinとcosの足しあわせですが、なぜこれで全ての連続な周期関数に収束させる事ができるといえるのでしょうか。つまり、sinとcosで描けない周期関数は存在しないとどのように保証するのでしょうか。 質問の背景------------------------------------------------------  (1)ようは二変数のフーリエ級数展開をしたいのですが、その展開式がわからないので考えました。その結果(*)を思いつくにいたりましたが、これでいいのか不安なので質問しました。  (2)に関しては興味本位の質問です。最近線形代数の授業が始まりだし、一時独立や基底などを少しやりましたが、関数は無限次元のベクトルと言えるので、その基底の数も無限ですよね?有限次元のベクトル空間ならば次元と一次独立なベクトルの数を合わせることで基底だといえますが、無限ならそうはいえないと思うのです。したがって三角関数だけでは描けない関数ベクトルが存在する可能性があるように思います。  (2)の答えがわかれば(1)の答えも自分で考える事ができるかもしれないのですが・・・。  参考になりそうなサイトの紹介だけでも大変うれしいです。よろしくお願いします。

  • 大学1年レベルの級数に関する問題です

        ∞             ∞ f(x)=Σ(a_n・x^n)に対して、Σa_n/(n+1)が収束すれば     n=1            n=1 1       ∞ ∫f(x)dx=Σa_n/(n+1) が成立することを示せ。  0     n=1   という問題についてなのですが 私はこの問題を見たとき、次の定理                閉区間A=[a,b]上の連続関数f_n:A→R(n=1,2,・・・)を一般項とする関数項級数Σf_n(x)がA上で一様収束していれば a  ∞      ∞  b ∫ Σf_n(x)dx=Σ ∫f_n(x)dx が成立する。 b n=1       n=1 a という、項別積分の定理を使おうと思いました。 それで、f_n(x)=a_n・x^nとし、この問題において与えられたΣa_n/(n+1)が収束という条件から、Σf_n(x)が[0,1]上で一様収束することを導こうとしたのですが、うまくいきませんでした。 しかし、Σa_n/(n+1)が収束ではなく絶対収束だったら、Σf_n(x)が[0,1]上で一様収束することを導けました。 具体的には、 Σa_n/(n+1)が絶対収束より、Σ{a_n/(n+1)}x^nの収束半径Rは1<Rを満たす。また、Σ{a_n/(n+1)}x^nとΣa_n・x^nの収束半径は等しい。 ここで 「整級数Σa_n・x^n=Σf_n(x)の収束半径をRとする。0<s<Rなる任意のsに対し、閉区間[-s,s]でこの関数級数は一様収束する」 という定理から、とくにs=1としてやれば、関数項級数Σf_nは[-1,1]で一様収束することが導ける。よって[0,1]でももちろん一様収束するから項別積分の定理が使える。 としました。 なのでもしかしたら”収束”という箇所がミスプリントなのでは?と思ったので質問させていただきました。 ですが、私が単に、収束という条件から答えを導き出せてない可能性のほうが高いと思うので。。。 どなたか回答よろしくお願いしますm(_ _)m ぜんぜん解けなくてとても困ってます・・・。

  • べき級数で解く微分方程式

    次の微分方程式の解を 式(5.1) = y(x) = Σ[i=0,∞] ( a_[i] * x^i ) のべき級数を用いて求めよ。 x (dy/dx) - y = x^k     (ただし、kは1以外の自然数) 解答 y を式(5.1)のべき級数で展開し、微分方程式に代入して係数a_iについての関係式を求める。 (1) べき級数展開から次の式を得る。      x Σ[i=0,∞] (i+1)( a_[i+1] * x^i ) - Σ[i=0,∞] ( a_[i] * x^i ) = x^k xの次数ごとに両辺の係数を比較すると、n≠kなるnについて (n-1)a_[n] = 0 となる。 ←疑問点 n≠1 (n≠k) に対して a_[n] = 0 であり、(k-1) * a_[k] = 1より y = 1/(k-1) * x^k を得る。 n=1に対しては、a_[n] = a_[1] ≠ 0でも(n-1) * a_[n] = 0となる。 実際、y = 1/(k-1) * x^k + ax (aは任意の定数) が微分方程式の解となる。 ・・・と本に書いてありますが、「疑問点」のところの比較の方法が分かりません。 まず、i が 0 から n まで変化する過程を自分で計算してみました。 i=0: x * (0+1) a_[0+1] * x^0 - a_[0] * x^0 = a_[1] * x - a_[0] i=1: x * (1+1) a_[1+1] * x^1 - a_[1] * x^1 = 2a_[2] * x^2 - a_[1] * x i=2: x * (2+1) a_[2+1] * x^2 - a_[2] * x^2 = 3a_[3] * x^3 - a_[2] * x^2 : i=n: x * (n+1) a_[n+1] * x^n - a_[n] * x^n = (n+1) a_[n+1] * x^(n+1) - a_[n] * x^n これらを使って「xの次数ごとに両辺の係数を比較する」んですよね。 しかし左辺だけでも、xの次数が1つずつズレていますよね・・・? これらと x^k を具体的にどうやって比較するのでしょうか? x^2ならx^2だけでまとめるんですか? それともx^3とx^2が混ざった形で比較するのですか(どうやってやるのか分かりませんけども)? どうか教えてください。お願いします。

  • ベルヌーイ型の微分方程式を超幾何級数で解きたいです

    ベルヌーイ型の微分方程式 y'+P(x)y=Q(x)y^n をガウス形に変換し、超幾何級数を用いて解く方法を教えてください。 よろしくお願いいたします。 P(x)=a/(x-b)、Q(x)=c/(x^2+bx)、n=-1/2 (a, b,c は定数) の場合を解こうとしています。 普通にベルヌーイ型で解こうとすると出来ない積分がでてきます。 そこで、ガウス型に変換し、超幾何級数で解く方法を模索しています。 教科書に載っているやり方で、級数を y=Σ(k=0,∞) ck x^(ρ+k) のように置いても、 また、式を更に微分し常2回微分方程式にしてガウス型への変換を試みていますが、できません。 やり方をご存知の方、いらっしゃいましたらご教示ください。 よろしくお願いいたします。

  • 微分方程式の級数解の求め方

    微分方程式の級数解の求め方について教えてください。 y' = a^2・y, y(0) = 1 の解が y = f(x) = Σ[n=0→∞]c(n)・x^n であるとします。 この場合に、係数 c10 値と、f(1) の値を求めたいと思います。 以下のように辿ってみましたが、途中でわからなくなりました。 解の式を微分して、 y' = c1 + 2c2・x + 3c3・x^2 + ... 元の方程式を展開すると、 y' = a^2( c0 + c1・x + c2・x^2 + ... ) 両式と y(0) = 1 より、 c1 = c0・a^2 = a^2 2c2・x = c1・x → c2 = c1・x / 2・x = c1 / 2 → a^2 / 2! 3c3・x^2 = c2・x^2 → c3 = c2・x^2 / 3・x^2 = c2 / 3 → a^2 / 3! ゆえに c(n) = a^2 / n! このあと c10 を算出するために上式の a の値は?などとわからなくなりました。 ここまでに誤りがないか、このあとをどうすればよいか、教えていただけないでしょうか。 よろしくお願いします。

  • 無限級数の項別微分

    通常、f(x)=Σ【n=0→∞】a[n]*x^n のような級数では、a[n]が絶対収束する場 合に項別微分が可能となりますが、項別微分したあとのf'(x)は、 f'(x)=Σ【n=1→∞】a[n]*n*x^(n-1)のように、nのはじまりは0より一個ずれて1 からとなりますよね。なぜnのはじまりをひとつずらすのか、その理屈がよくわかりません。f'(x)の右辺の最後のx^(n-1)が、微分したことで次数がひとつ下がってしまったから、帳尻を合わせるためにnを1からスタートさせたのでしょうか?

  • フーリエ級数について

    次の問題を解いてください。 周期2πの関数f(x)が区間-π<x≦πにおいて次のようにフーリエ級数に展開されている。 f(x)=Σ[n=1,∞]2sin(nx)/n ここで、関数g(x)が区間-π<x≦πにおいて区分的に連続で、そのフーリエ級数は g(x)=c_0/2 + Σ[n=1,∞](c_n cos(nx)+d_n sin(nx)) で表されるとき、次の二つの関係式を三角関数の直交性を用いて説明せよ。 I_1=(1/2π)∫[-π,π]f(x)g(x)dx=Σ[n=1,∞]d_n/n I_2=(1/2π)∫[-π,π]f(x)g(x+t)dx=Σ[n=1,∞](d_n cos(nt)-c_n sin(nt))/n くわしくお願いします。