• ベストアンサー
  • すぐに回答を!

図形の問題です。

母線の長さが6√2、高さが8の円錐があります。 この円錐の内部に、体積が最大になる球をつくるとき、この球の半径を求めよ。 また、同じ円錐の内部に、体積が最大となる立方体をつくるときの立方体の4つの頂点が円錐の底面にあるものとして、この立方体の一辺の長さを求めよ。 という問題です。 解き方とともに、お願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

1) 内接球の半径  円錐の高さを含む平面で切った断面で考えます。  この断面の三角形の面積について、内接球の半径をrとして考えますと、次の等式が得られます(三角形の面積と内接円の半径との関係を利用しています)。   (6√2+6√2+4√2)r/2=4√2×8/2  ∴ r=2 2) 内接立方体の一辺の長さ  円錐の高さと、内接立方体の対角線を含む平面で切った断面で考えます。  内接立方体の一辺の長さをaとして、この断面の左側の大小2組の直角三角形で2辺の相似比を考えると、次の等式が得られます。   2√2/8=(2√2-√2a/2)/a  ∴ a=8/3  断面の取り方がミソです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

わかりやすい回答、ありがとうございました。 またお願いします。

その他の回答 (1)

  • 回答No.2

頂点から垂直に切った断面を考える(図を描く)と、わかりやすいです。 図をつけておきます。 ・球 求める球の半径を rとしたとき、最大となる球は図のようになります。 この断面図をよく見てください。 答えを出すためのヒントは、「内接円」です。 ・立方体 これも図のようになれば最大となります。 図の「縦」と「横」の関係をよく見てください。 答えを出すためのヒントは、「相似」です。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 円錐の数学の問題の解答・解放を教えてください。

    底面の半径が3cm、母線の長さが5cmの円錐の中に半径の等しい2つの球P,Qがある。2つの球P,Qは互いに接し、円錐の底面と側面に接しているとき、以下の問いに答えよ。ただし、2つの球の中心と、円錐の頂点と、円錐の底面の中心は同一平面上にあるものとする。 1)球Pの半径を求めよ。 2)円錐の体積は、球Pの体積の何倍か? 3)球Pと円錐の側面が接する点をAとする。点Aを通り、円錐の底面に平行な平面で球Pを切断する時、球Pの切断面の面積を求めよ。 4)設問の円錐の中に、球Pと半径が異なる球Rを次のように入れる。3つの球は互いに接し、球Rは円錐の側面に接している。3つの球の中心と円錐の頂点が同一平面上にある時、球Rの半径を求めよ。

  • 図形と計量(高校数学I)

    図形と計量の問題で 「半径2の球に高さ3の円錐が内接している。球と円錐の体積比と表面積比を求めよ」 が分かりません。ヒントによると円錐の底面は√3になるそうですが何故でしょう。球の体積と表面積は分かるのですが・・・。 ちなみに答え(球:円錐)は体積比32:9、表面積比は16:9だそうです。 確かに円錐の底面の半径が√3ならこのようになるのは分かりますが、どうやって考えればいいのでしょう?

  • 三角形の問題なのですが

    宿題なのですがどうしても自分の力だけでは解けませんでした。 高校の数学なのですが、教えてください。 よろしくお願いします。 (1)半径3の球の体積と、半径4の底面を持つ高さ6の円錐n体積の比の 求め方を教えてください。 球の体積?:円錐の体積? (2)半径4の円に内接する正三角形の面積の求め方を教えてください。 △ABC=? 問題が多くてすいません。

  • 半径を求める

    底面の半径が6cm、高さが8cm、母線が10cmの円錐があり、円錐の底面と母線に接した球がある。 問い この球の半径を求めなさい。 求め方を教えて下さい。

  • 図形の問題です。

    図形の問題です。 底面の半径が3cm、高さが4cmの直円錐を底面に垂直な平面で2等分した立体である。この立方体の表面積を求めよ。 答えは12π+12cm2です。 扇形の中心角は360°×3/5×1/2=108°になるようですが、3/5の意味が分からないのでここだけ教えてください。 よろしくお願いします。

  • 数学の問題

    立方体に外接している球があります。その球の半径は1です。その時立方体は 1.1 2.3 3.3√3 4.8/3√2 5.9√3 6.9√8/3 体積なのか立方体の辺の長さなのかわからないのですが、 すいませんお願いします(◎o◎)

  • 円錐と球の体積

    球Aは底面の半径が6、母線の長さが10の円錐の容器にぴったりとおさまる。 (1)球Aの体積を求めよ。 (2)この円錐の容器に水を満たしてから、球を静かに入れたとき容器内に残っている水の体積を求めよ。 高校一年生なのですが、全く分かりません。 よろしくお願いします。

  • 図形を見ながら解く問題ですが・・、それでも教えてください

    直円錐台の上底面、下底面の半径をそれぞれr1、r2とし、母線ABの長さをl(エル)とする。さらに、線分ABの中点を通り底面に平行な平面による直円錐台の切り口の円の半径をr0とする。直円錐台の側面積Sは、次の式で表される事を示せ。 S=2πr0l(エル) お願いしますね、教えてください!!

  • 空間図形の問題です。

    図のように1辺の長さが2cmの立方体ABCD-EFGHがある。辺AB,BC,EFの中点をそれぞれI,J,Kとする。 点Hを頂点として、△IJKを底面とする三角錐の体積を求めなさい。 解説を読んでも理解できません。 なるべく詳しく解説お願いしますm(__)m

  • 数学の問題です!お願いします 

    数学の問題です!お願いします  図IのAのコップは底面の半径が3cm、高さが10cmの円柱の形。Bのコップは底面の半径が4cm、高さが20cmの円錐を、高さが半分になるように分けた立体のうち 、底面を含む方の立体の形をしており、2つに分けた面の円の半径は2cmである。また、Cのコップは容器の部分が、底面の半径が3cm、高さが8√2cm、母線が12cmの円錐の形をしており、円錐の頂点には、容器を支えるための長さ3cmの支柱と底面の半径が3cmの円形の代が、円錐底面と平行になるようについている このとき、次の問いに答えなさい ただし、円周率はπとしガラスの厚みやゆがみは考えないものとする (1)Aのコップの側面積を求めなさい (2)Cのコップの容器部分の円錐について、側面の展開図の中心角の大きさを求めなさい (3)3つのコップの中で、体積が最も大きいのはどれか。そのコップの体積も求めなさい (4)誤ってCのコップを倒してしまった。倒れたコップは、図IIのように、滑ることなく平面上を転がり、底面の代の円がちょうど1回転したところで止まった。このとき、Cのコップの容器の部分が平面上を転がって出来る立体の体積を求めなさい