- ベストアンサー
- すぐに回答を!
図形を見ながら解く問題ですが・・、それでも教えてください
直円錐台の上底面、下底面の半径をそれぞれr1、r2とし、母線ABの長さをl(エル)とする。さらに、線分ABの中点を通り底面に平行な平面による直円錐台の切り口の円の半径をr0とする。直円錐台の側面積Sは、次の式で表される事を示せ。 S=2πr0l(エル) お願いしますね、教えてください!!
- akatukinoshoujyo
- お礼率2% (3/148)
- 数学・算数
- 回答数2
- ありがとう数0
- みんなの回答 (2)
- 専門家の回答
関連するQ&A
- 円すいの展開図おうぎ形における最短距離について
何度考えても 回答と一緒の答えがだせません。 すみませんが、解き方を教えてください。 底面の半径2cm、母線ABの長さ6cmの円すいにおいて、点Pは母線ABの中点、2点B、Cは底面の直径の両端とする。このとき、次の問いに答えなさい。 (問)側面にそって、2点P、Cを結ぶ最も短い長さを求めよ。 (答)3√7cm (解説)円すいの展開図は、中心角120°、半径6cmのおうぎ形である。 線分PC=√(3+3)^2+(3√3)^2=√63=3√7 線分PCの位置関係と解説の式の数字はどこからだしたものかというのがわかりません。 どうか よろしくお願いします。
- ベストアンサー
- 数学・算数
- 数学の問題です(中学レベル)。
詳しく解説、よろしくお願い致します。 「底面の半径が5センチ、体積が200センチの円錐を、底面に平行な平面で切ったところ、切り口の半径が2センチになった。下側の円錐台の体積を求めよ。」
- ベストアンサー
- 数学・算数
- サマースクールの問題!!!!
底面の半径がr,母線の長さがaである円錐がある。この円錐の表面積をsとするとき、aをs,rの式で表しなさい。ただし、円周率はπとする。 これをこたえてください。
- 締切済み
- 数学・算数
- 数学の空間図形の問題教えてください
中三レベルの問題です。 「底面の半径がrcm、母線の長がlcmの円錐があります。この円錐の側面積をr,lを使った式で表しなさい。ただし円周率はπとする」 という問題があります。答えはπlr(cm2)になっていたのですが、解説を読んでも理解出来ないので、お手数かけますが分かりやすいように答えてください。
- ベストアンサー
- 数学・算数
- 円錐に内接する球があるときは直円錐ですか。
数学1Aの勉強をしています。 どうしてもわからないことがあるので教えていただけると助かります。 ------------------ 問題: 図のような高さが12cm, 底面の半径が5cmの円錐に内接する球S1がある. さらに, 球S1と円錐に接する球S2がある. 球S1の半径rを求めよ。 ------------------ この問題のヒントには、この場合は二等辺三角形なので特に簡単だと書いてあり、解法も平面上の二等辺三角形を用いるものとなっています。 問題の解説通り、切り口が二等辺三角形だとするとこの円錐は直円錐ということになると思います。 しかし、この円錐が直円錐だということはどこで判断できるのでしょうか。確かに見た目は直円錐ですが。 球が内接すればどんな円錐も直円錐になるのですか。 数学の基礎がなってないため勘違いもかなりあり、ちょっとしたことでつまずいてしまいます。 よろしくお願い致します。
- 締切済み
- 数学・算数
- 円錐の表面積の出しかた
こんにちは。 母線をlとして円錐の底面の半径をr、高さをhとする場合 円錐の扇状の角度の出したかは 底面の周囲*l = 2πrl でいいんではないでしょうか? よそで見ると360*(r/l)となっています。 何故なんでしょうか? おねがいします。
- ベストアンサー
- 数学・算数
- 数学Iの三角比の問題で
数学Iの三角比の問題で 底面の半径が4、高さが2√5の直円錐がある。この直円錐の頂点をO、底面の直径の両端をA、Bとし、線分OBの中点をPとするとき、側面上でAからPに至る最短距離を求めよ。 という問題で、 角度が240°と出てくるのですが、 なぜか解答では2で割って、120°にしています。 なぜ240°で計算してはいけないのでしょうか?
- ベストアンサー
- 数学・算数