• 締切済み
  • すぐに回答を!

偏微分の計算について

偏微分について学んでいます。 微分したい文字以外は係数とおいて計算するまではわかりました。 しかし以下のような偏微分の計算の仕方について困ってます。 「z=x^2+y^2+2xyの2変数関数についてx,yのそれぞれで偏微分せよ。」という問題で、 ∂z/∂x=2x+2y、∂z/∂y=2y+2x ∂^2 z/∂x^2=2、∂^2 z/∂y^2=2 という計算まではできるのですが、 「∂^2 z/∂x∂y=2」「∂^2 z/∂y∂x=2」となる意味がよくわかりません。 ∂^2 z/∂x∂y=2、∂^2 z/∂y∂x=2という答えを導くには 上の4つの ∂z/∂x=2x+2y、∂z/∂y=2y+2x ∂^2 z/∂x^2=2、∂^2 z/∂y^2=2 のどれを使って、どう計算すればいいのでしょうか? よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数698
  • ありがとう数0

みんなの回答

  • 回答No.2
  • info22
  • ベストアンサー率55% (2225/4034)

z=f(x,t)とおく。 fx=∂z/∂x=2x+2y をyで偏微分すると fxy=∂(∂z/∂x)/∂y=∂(2x+2y)/∂y fxy=∂^2 z/∂x∂y=2 と出てきます。 fy=∂z/∂y=2y+2x をxで偏微分すると fyx=∂(∂z/∂y)/∂x=∂(2x+2y)/∂x fyx=∂^2 z/∂y∂x=2 と計算しても良いですね。 fxyとfyxとが等しくなる場合の条件は参考URLのSchwarzの定理に書かれています。この定理の条件が満たされない場合はfxy≠fyxとなるということですね。

参考URL:
http://www.math.titech.ac.jp/~inoue/EA-holder/EAI-02-06-25.pdf

共感・感謝の気持ちを伝えよう!

  • 回答No.1
noname#190095
noname#190095

∂^2 z/∂x∂y は∂z/∂x(=2x+2y)をyで偏微分したもの ∂^2 z/∂y∂x は∂z/∂y(=2y+2x)をxで偏微分したもの となります。 ちなみに答えをみると∂^2 z/∂x∂y = ∂^2 z/∂y∂x =2 となっていますが、これは偶然ではなくz(x,y)が連続関数なら 偏微分の順序を交換しても同じ関数になります(シュワルツの定理)。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • xについての偏微分

    2変数関数f(x,y) f(x,y) = xy^2/x^2+y^2   ((x,y)≠(0,0)のとき)     =   0 ((x,y)=(0,0)のとき) をxについて偏微分するとどうなりますか?また、(0,0)での偏微分はどうしたらいいのでしょうか? 宜しくお願いします。

  • 偏微分をド忘れしてしまいました.

    偏微分をド忘れしてしまいました. 例えば,f(x,y) = x^2 + 3xy という関数を考えたとき, ∂f/∂x = 2x + 3y ですよね. ここでyがxの関数,例えば y(x) = x^4 としたら, ∂f/∂x = 2x + 3y = 2x + 3x^4 になるでしょうか, それとも最初にf(x,y) = x^2 + 3xy = x^2 + 3x^5 としてから ∂f/∂x = 2x + 15x^4 とするのでしょうか.

  • 偏微分の問題です。

    偏微分の問題です。 D = {(x,y)∈R^2 | x>0, y>0} x*[∂f/∂x] - y*[∂f/∂y] = 0 ならば、 f(x,y)は1変数の関数g(t)によって、f(x,y)=g(xy)とあらわされることを示せ。

  • 偏微分

    数学の問題なのですが、まったくわかりません。 助けてください。 次の関数の偏微分を求めよ。 f(x,y,z)= (1) 2x + 3x^2y + yz^2 + 4 (2) (2x - x^2y)(4y^3 + yz^2) (3) (cosx + 2xz) sin3y (4) 2z^4e^xy + y(sin2x)e^3x たとえば (1) では ∂f / ∂x = 2 + 6xy + yz^2 ∂f / ∂y = 2x + 3x^2 + z^2 ∂f / ∂z = 2x + 3x^2y + 2yz となるのでしょうか?? いまいち偏微分が理解できません。 できれば教えてください!!

  • 偏微分とかの問題を教えてください。

    (1) f(x,y)=sin log(x+2y)の(x,y)=(2,1)のまわりでの1次近似式と偏微分係数を求めなさい (2) f(x,y)=Arctan(x tany)の(x,y)=(a,b)のまわりでの1次近似式と偏微分係数を求めなさい (3) z=a-(x-b・e^(-y))^2、(aとbは定数)が次を満たすことを示しなさい。 2x(∂z/∂x)+(∂z/∂x)^2=2(∂z/∂y) (4) z=(1/a)(x+ay)^2+b、(a,bは定数)が次を満たすことを示しなさい (∂z/∂x)・(∂z/∂y)=2x・(∂z/∂x)+2y・(∂z/∂y) (5) Φ(ε)が任意の微分可能1変数関数であるとし、u(x,y)=Φ(2xy)とする。次が成立する事を示しなさい x・(∂u/∂x)+x・(∂u/∂y)=0 (6) Φ(ε)が任意の微分可能1変数関数とし、u=u(x,y)=(x+y)Φ(x^2-y^2)とする。 次が成立することを示しなさい y・(∂u/∂x)+x・(∂u/∂y)=u (7) Φ(ε)が任意の微分可能1変数関数であり、a,b,cが実定数であるとき、 u(x,y)=Φ(ax^2+2bxy+cy^2)とすると次が成立する事を示しなさい (bx-cy)・(∂u/∂x)-(ax+by)・(∂u/∂y)=0

  • 偏微分

    助けて! 次の関数の偏微分を求めよ。 f(x,y,z)= (1) 2x 3x^2y yz^2 4 (2) (2x-x^2y)(4y^3 yz^2) (3) (cosx 2xz)sin3y (4) 2z^4e^xy y(sin2x)e^3x

  • 2変数関数 f(x,y)の偏微分する方法をご指南ください

    2変数関数 f(x,y)を偏微分をといてみたものの あっているか自信がありません。(特に4番) わかる方、ご指導よろしくお願いします。 【問題】 次の2変数関数f(x,y)を偏微分せよ。 すなわち、関数f(x,y)のxおよびy関する変動関数fx(x,y)およびfy(x,y)を求めよ。 (1) x^2+3x+y+2 xに関するyの偏微分: fx(x,y) = 2x+3 yに関するyの偏微分: fy(x,y) = 1 (2) x^2y^3+3x+2y xに関するyの偏微分: fx(x,y) = 2xy^3+3 yに関するyの偏微分: fy(x,y) = 3x^2+2 (3) (x-y)/(x+y) xに関するyの偏微分: fx(x,y) = 1/1=1 yに関するyの偏微分: fy(x,y) = -1/1=-1 (4) √(x^2+y^2+1) f(x,y)=√(x^2+y^2+1)=(x^2+y^2+1)^(1/2) xに関するyの偏微分: fx(x,y) = 1/(√(x^2+y^2+1)) ? yに関するyの偏微分: fy(x,y) = 1/(√(y^2+x^2+1)) ? ※(4)は、答えに全く自信がありません。  できれば、途中の計算プロセスを詳しく教えていただけると助かります。 以上、よろしくお願いします。

  • 偏微分の問題

    物理学基礎論で、偏微分を習いましたがよく分かりません>< 今朝、数学のジャンルで質問させていただきましたが、質問の意味が分からないと言われたので、問題ごとこちらに質問させていただきます。 1、次の偏微分を求めよ。ただし位置ベクトルrの独立変数はデカルト座標(x,y,z)である。 ∂r/∂x これに対し私の答えは・・・ Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) 2、次の偏微分を求めよ。ただし()-()ではデカルト座標xyzを極座標rθΦの関数とし、()-()では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 ()Δx/Δθ=rcosθ×cosΦ ()Δy/ΔΦ=rsinθ×cosΦ ()Δz/Δr=cosθ これでよいでしょうか・・・?? ()Δr/Δy=y/√(x^2+y^2+z^2)=y/r ()Δθ/Δz ()ΔΦ/Δx ()()がまったく分かりません^^;たとえば、()ではtanθを微分したらよいのでしょうか?? どなたかよろしくお願いいたします。

  • 偏微分(?)について

    すべての実数xについて微分可能な関数f(x)において f(x+y)=f(x)+f(y)+xy…(A) f'(0)=1 (1)f(0)の値を求めよ。 (2)f(x)を求めよ。 という問題ですが、(1)はいいとして、(2)で計算していくときに普通にやるならば導関数の定義に持ち込むことになると思います。ただこのタイプの問題としてはもちろん毎回違う形で関数が与えられますから、式変形の最中にどうすればいいか止まってしまうこともありえます。 ところが、この問題の場合すべてのxにおいて微分可能が保障されているので「(A)において、xを固定し、yで微分する」というやり方(多分これが偏微分だと思うのですが...)を用いるとすぐに解けますし、迷う箇所もありません。 これは予備校で教わったのですが、もちろん教科書には書かれていません。確かに(x+y)^2=x^2+2xy+y^2に対してこれと同じ事をおこなうと、両辺等しくなり等号は成り立ちます。つまり恒等式であり続けます。しかしこの解法について根本的に理解したとは思えませんし、教科書にないようなこういう解答は許されるのでしょうか?

  • 偏微分について

    偏微分を学習していると(∂^2/∂x∂y)F(x,y)がでてきました。これはxyどちらで先に偏微分をするのでしょうか? また(∂^2/∂x^2+∂^2/∂y^2)F(x,y)は (∂^2/∂x^2)F(x,y)+(∂^2/∂y^2)F(x,y)と同義ですか?