• ベストアンサー

三角形と円に関する性質の超難問(大学生以上向き)

stomachmanの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.2

ご質問の1行目を読んでもよく分かんなかったのですが、リンクの図からすると、 命題:「任意の円Pと、円Pに内包される任意の円Qとがあるとき、円Rが存在して以下を満たす: 円Pの円周上の任意の点をAとし、Aを通る円Qの接線2本が円Pの円周と再び交わる点をそれぞれB, Cとすると、直線BCは円Rに接する」 ってことですね。こりゃ面白い定理ですね~  証明はできたんですが、三角関数が出ずっぱりでエレガントにはほど遠い。でもどんな風にやったか、ご参考までに概要だけ申し上げましょう。 ~~~~~~~~~~~~~~~~~ 上記の命題が正しいとすると、「円Rの中心Rは、円Pの中心Pと円Qの中心Qを結ぶ直線L上にある」ということは自明。従って直交座標系において、円Pを単位円であるとし、円Qを中心がQ=(a,0)で半径qの円であるとし、円Rを中心がR=(b,0)で半径rの円であるとしても一般性を失いません。 点Aと円Qの中心点Qを結ぶ直線が円Pと再び交わる点をDとします。 α=∠BAD とおくと、当然 ∠CAD=α であり、また中心角∠BODと∠CODは ∠BOD=∠COD=2α となります。従って、弧CDの長さは弧BDの長さと等しく、△DBCはDを頂点とする二等辺三角形であり、辺BCは線分ODと直交する。その交点をMとすると OM=cos2α です。 さて、点Dの座標を(cosφ, sinφ)とします。 OM=bcosφ+r または OM=bcosφ-r を満たすとき、BCは円Rに接します。 だから、「定数r,bが存在して、点Aが円周P上のどこにあろうともこの式が成り立つ」ということを証明すれば、当初の命題が証明できたことになります。 ところで、 ∠QAC=∠QAB=α です。 QA=v と置くと、余弦定理により v^2=1+a^2-2acosθ です。(「acosθ」ってのは「a掛けるcosθ」のことであって、arccosθじゃありません。)また、 sinα=q/v である。以上から、 OM=cos2α=1-2(sinα)^2 = 1-2(q^2)/(v^2) = 1-2(q^2)/(1+a^2-2acosθ) です。 さらに、 γ=∠OAQ とおくと、 φ=θ+π+2γ です。△OQAの正弦定理から sinγ=(a/v)sinθ また、円Qが円Pの中にあるので |γ|<π/2だから cosγ=√(1-((sinγ)^2))=(1-acosθ)/v です。 で、 OM=bcosφ+c(cはrまたは-rです。) が恒等的に(つまり任意のθについて)成り立つようなb, cが存在することを示す。 ~~~~~~~~~~~~~~~~~ 数式をごりごりした結果、連立一次方程式 ((a^2)+1)c+2ab=1+(a^2)-2(q^2) 2ac+((a^2)+1)b=2a にたどりつき、 c=1-2(a^2+1)(q^2)/(((a^2)-1)^2) b=4a(q^2)/(((a^2)-1)^2) と出たけれど、きっと計算間違いしているだろうと思います。

関連するQ&A

  • 円の性質

    三角形ABCの頂点Bを通る円と頂点Cを通る円が辺BC上の点Pと三角形ABC内の点Qで交わっている。辺AB,ACと2つの円との交点をそれぞれR,Sとするとき、四角形ARQSは円に内接することを証明せよ。   の解答をお願いします。

  • 円と相似の証明問題

    (1)A.B.C.Dは円周上の点で孤AB=孤ACです。 弦AD.BCの交点をPとするとき△ABP∽△ADBとなります。 このことを証明しなさい。 (2)A.B.Cは円Oの円上の点でBCは直径です。 ∠ABCの二等線分をひき弦AC円Oとの交点をそれぞれD.Eとします。 このとき∠ABC=60°であれ△ABC∽△EDCとなります。 このことを証明しなさい。 求め方と答えを教えてください(^_^)

  • 円の性質

    こんばんわ、えっと証明問題がイマイチなのでアドバイスお願いします。                 ⌒   ⌒ Q,円の弦AB、ACがあり、弧A B、A Cの中点をする。弦MNと、弦MNと弦AB、ACとの好転をそれぞれD、Eとするとき△ADEは二等辺三角形であることを証明 という問題なんですが、掴みづらくわかりません、

  • 2等辺三角形の性質を使った証明の解法を教えて下さい

    図において△ABCはAB=ACの二等辺三角形である。また、点DはDC=BCとなる辺AB上の点であり、点Eは、ED=AB,EC=ACとなる点である。このとき、△CEA=△ABCとなることを証明しなさい。という問題を解くにあたり、知っていないといけない項目について、教えて下さい。どうぞよろしくお願いします。

  • 円の性質

    円Oに内接する正三角形を三角形ABCとし、弧AB,弧ACの中点をそれぞれD、Eとする。弦DEとAB,ACの交点をそれぞれF,Gとするとき、DF=FG=GEであることを証明せよ。     の解答をお願いします。

  • 小学生でも解けるらしい超難問です。

    点A,B,Cはある正五角形の5つの頂点のうちの3つです。 AB=AC,AB>BC,∠PBC=6°,BC=PCのとき、∠PACの大きさを求めよという問題です。 ちなみに小学生高学年の知識だけでも解けるそうです。 お願いします。

  • 三角形の性質

    AB>ACである三角形ABCにおいて、Aから直線BC上に下ろした垂線AH上に点Aとは異なる点Pをとると、AB-AC<PB-PCとなることの証明ですが三平方の定理を使わずに直観的、図形的な方法を教えてください

  • 円の性質

    円の問題で困っています。 「半径4センチの円Oと円O’が互いの円の中心を通るように重なっている。ABとODはそれぞれ円の直径で、BCは円O’の中心を通っている。また、ADとBCの交点をEとする。このとき△CDEの面積を求めよ」っていう問題です。 図がないとわかりにくいのですが、 点Aは二つの円の交点です。 点Aと円Oの中心を通る線分と円Oの交点を点Bになります。 また、円Oと円O’を通る線分と円O’との交点が点Dになります。 さらに、点Bと円O’の中心を通る線分と円O’との交点が点Cです。 出題対象者は中学三年生になります。宜しくおねがいします。

  • 三角形の3辺の長さの性質の証明

    定理1、2辺の長さの和は、他の一辺の長さより大きい 定理2、2辺の長さの差は、他の一辺の長さより小さい を証明する問題で、 1の証明 △ABCにおいて辺BAのAを越える延長上にAD=ACであるような点Dをとると、BD=AB+AC…(1) また△ACDは、∠Aを頂点とする二等辺三角形であるから ∠ACD=∠ADC △BCDにおいて、線分ACは∠BCDの内部にあるから ∠BCD > ∠ADC すなわち∠BCD > ∠ADC=∠BDC ゆえに、定理2より BD>BC・・・(2) (1)、2から AB+AC>BC 同様にしてBC+BA>CA,CA+CB>AB (終) 定理1の証明はできたんですが定理2の証明がどうしてもわからないのでどなたか教えてください。 定理1を使って証明したいです。お願いします

  • 円に内接する三角形の面積

    中学入試問題に悩んでいます。考えても見当がつきませんでしたので、どなたか、ご回答をお願いいたします。 問題 半径5の円に内接する△ABCがある。 AB=8,AC=2√10とし、点Aから辺BCに垂線ADを引いてできる△ADCの面積を求めよ。 図がなくて分かりづらいかもしれませんが、よろしくお願いします。