• 締切済み

分析学の定理と構造か良く解らず困っています

解析学の無限数列と実数による数列の収束についての基本知識が乏しく 式の成り立ち、定理の確定までの数列、式共に良くわかりません どなたか式の求め方並びに、定理の基本を教えてください 追伸 先日の質問は軽率な動きを見せてしまいまして、回答をくれた方、並びに、質問を御覧頂いた皆様に、大変申し訳ないことをしました。 この場で心よりお詫び申し上げます

みんなの回答

  • Knotopolog
  • ベストアンサー率50% (564/1107)
回答No.1

タイトルの「分析学の...」は「解析学の...」の書き違いと思います.質問の記述内容が漠然としていて,質問の意味が取りにくいのですが, 質問の趣旨を推察しますと, (1): 実数上の無限数列(無限級数)の収束値の求め方を知りたい. (2): 「定理の確定までの数列,式...」,「定理の基本...」とは,無限数列の収束値を求める方法のことを指しているのだと解釈しました. 無限数列に関しては,一言で簡単に解説,記述することは出来ませんので,参考書を1つ挙げておきます. 「解析教程 上」,「解析教程 下」,E.ハイラー/G.ワナー 著,蟹江幸博 訳,シュプリンガー・フェアラーク東京.1997年初版. 上記の「解析教程 下」に無限数列が分かりやすく書かれています.

comirea
質問者

お礼

まことに有難うございます 探してみます

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 線形空間についてです

    私がいま使っている教科書に次のような記述がありました。 「実数列の全体は実線形空間である。 ただし{a_n}+{b_n}={a_n+b_n} {ca_n}=c{a_n}と定義する このうち、収束する数列だけを考えれば、解析学での周知の定理により ふたたび実線形空間がえられる。」 (1)実数列が実線形空間になるとありますが、証明がわかりません。 実線形空間の公理を一つ一つ確認するのでしょうが、数列ってどこまでも無限に続いていくのに、どうやって示すのですか?(たとえばa(x+y)=ax+ayなど・・) たしかに公理を満たしそうですが、このような無限につづくものに対しては自明としていいのですか。 (2)収束しない数列だけを考えても実線形空間になるんですよね? なのにわざわざ収束するものだけを、特別に書いているのはなぜですか?なにか意味(うれしいこと?)があるのでしょうか。 解析学での周知の定理ってのも具体的になにを示しているのか・・。 どなたか解説よろしくお願いします。

  • 無限等比級数と無限等比数列の違い

    無限等比級数と無限等比数列の違い 定義 無限等比数列{r^n-1}の収束条件は、-1<r≦1であるが、 無限等比級数Σr^n-1の収束条件は、 、-1<r<1 無限等比数列は、なぜ1が含まれるのですか? あと、基本的な質問ですが、 無限等比数列は、等比数列が、無限に続き 無限等比級数は、等比数列が、無限に続いたときの和ですか? 具体的な例などを添えて、説明していただけるとありがたいです。

  • 不等式 |a-b|<(1/2)|b| ならば |a|>(1/2)|b| (a,b:複素数) の証明

    解析の本で ある複素数列がある複素数に収束するとき その逆数の数列が収束値の逆数に収束する証明で使われています。 なんか自明のように使われていました。 虫のいいお願いですが、 複素平面を利用した幾何的な証明と 代数的な(式による)証明と いただけるとうれしいです。

  • 減少数列と極限

    ある減少数列(an≦an-1となる数列かつ詳細なanの式は出せない)がありかつすべてのnについてan≧bとなる実数がある時その数列のn→∞の極限は収束すると言えますか?例外があるかわからなくなりました

  • 無限数列

    一般項が次の式で表される無限数列が収束するか発散するか調べ、 収束する場合にはその極限値を求めよ。 (1) [{(-1)^n}2n]/(n-3) (2)(-2^n)/{(3^n)-1} (1)は分母が1に収束するのは分かるのですが分子はどうなりますか? (2)は全く分かりません

  • 素数定理では満足できない

    π(N)≒N/logN この素数定理、今もって、極めて有名・有意義な式らしいですね。 例えばN=100万のとき、左辺は78,498、右辺は72,382・・・だそうです。結構誤差がありますね。 しかし、この素数定理は、Nがとてつもなく大きくなると、極端に言えば無限大だとすると、「≒」が「=」となる、と言っているんでしたよね。すばらしい発見です。 が、裏を返せば、無限大まではいかないけどとてつもなく大きなN、例えば10の1億乗までには何個の素数があるかとなると、やはり上式による限りは近似値しか得られません。 そこで質問ですが、いかなる大きさであろうとも、有限の値Nに対し、近似値ではなく正確な個数π(N)を表す式は発見されていないのでしょうか。

  • 数III 無限級数の収束・発散を調べたい

      与えられた無限級数の 奇数項の部分和 と 偶数項の部分和 が異なる値に収束する よってこの無限級数は振動し、発散する という解法と、 与えられた無限級数の 数列が0に収束しない よってこの無限級数は発散する という解法はわかるのですが、 与えられた無限級数の 奇数項(偶数項)の数列の極限が0に収束しない  よってこの無限級数は発散する という解法が、いまいちピンときません。 どこがわからないのか?といわれても はっきり答えることができないのですが… 3つ目の解法では具体的に どんなことが起きているのか 教えてください。 漠然とした質問ですみません。

  • 数列が収束するための必要十分条件(定理)の証明が分かりません

    コーシー列の手前のところの勉強をしています。旧版の「解析学序説(上)」P130(2003年の新版では下巻 P5)です。 [定理] 数列a(n)が、ある有限な値に収束するための必要十分条件は、数列が有界であって、しかもその集積値ただ一つしかないことである。 ちょっと長くなりますが、証明を全体を引用します。 [証明] 必要なことはすでに述べたから、十分なことを証明する。a(n)は有界だから(前出の定理により)集積値があり、それは仮定によりαただ一つである。もしa(n)がこのαに収束しなかったとすると、ある限界ε0(イプシロンゼロ)があって、どんなに先へ行っても|a(n)-α|≧ε0 であるa(n)があるから、a(n)から部分列 a(ni)を選んで、すべてのniについて|a(ni)-α|≧ε0 であるようにできる。(前出の定理により) a(ni)は集積値βを持つが、|β-α|≧ε0 だから、β≠α。しかもβはもとの数列の集積値でもあるから、これは仮定に反する。ゆえにa(n)→α。 (引用終わり) この中で、|β-α|≧ε0 というのがどうしても導けません、というか分かりません。 線分図というか数直線表示をすると、「すべてのniについて|a(ni)-α|≧ε0 であるようにできる」ので、もしβが(α-ε0,α+ε0) の中に入ってしまうとするならば、すべてのa(ni)が(α-ε0,α+ε0) の中に入ってしまい、矛盾を生じることは分かるのですが、絶対値を含む初歩的な不等式を使うことによって、|β-α|≧ε0 が導けると推測するのですけれども、できませんでした。 よろしくお願いいたします。

  • 関数と極限

    第n項が次の式で表される数列の収束,発散を調べよ。 (1)0.99 (2)(-4/3)^n (3)(√2)^n で、 (1)0.99は、0.99→0.9801→0.970299と0に近づいているので正の無限大に発散 (2)(4/3)^nは、(4/3)→(16/9)→(-64/27)と符号が-,+交互になっているので振動で発散 (3)(√2)^nは、(√2)→(2)→ (2√2)と増えているから正の無限大に発散 これで合ってますか。どう場合に収束なのか見極め方があれば教えて下さい。

  • 収束 と 有界 について

    Gelfand-Mazurの定理の証明での途中で A:バナッハ体 x∈A λ:複素数 x(λ)=(x-λ)^(-1) <リゾルベント> (複素平面で定義されていてB環の元を価とする関数) ∥x(λ)∥=∥(x-λ)^(-1)∥=1/|λ|・∥(x/λ-1)^(-1)∥ λ→∞ →0・1=0 とあったのですが、1/|λ|が0に収束するのはわかるのですが、 ∥(x/λ-1)^(-1)∥が1に収束すると言う証明の仕方がわかりません。 考えればあたりまえなのですが、それをちゃんと式で証明すると言うのができずにもやもやしています。 また、上式からx(λ)が有界であるという結果を導けますが、 なぜ有界といえるのでしょうか。 収束する数列は有界というのがありますが、それは実数での話なので複素数となった時はどういう考え方をすればよいのかわかりません。 詳しく教えていただけると嬉しいですが、 こうやってみては?というアドバイスだけでも、何をどうしてよいのかわからない状態なので嬉しいです。 宜しくお願い致します。

このQ&Aのポイント
  • スリープからの起動ができず、再起動されてしまう問題が発生しています。
  • スリープモードから復帰する際に画面が暗転し、マウスやキーボードの反応がない状態が続きます。
  • しばらくすると自動的に再起動が行われてしまい、頻繁にこの問題が発生しています。改善策を教えてください。
回答を見る