出力方程式の係数が1になる理由

このQ&Aのポイント
  • 出力方程式の係数が1になる理由を教えてください。
  • 出力方程式の係数が1になる理由は、式(5)が式(1.2)に相当するからです。出力方程式の係数であるCの導出方法については分かりません。
  • 式(1.1)のAに相当するのは-D/Cであり、Bに相当するのは1/Cです。ドット付きx(t)は時間に関する微分なので、時間で積分することでx(t)が得られます。
回答を見る
  • ベストアンサー

出力方程式の係数が1になる理由

出力方程式の係数が1になる理由を教えて下さい。 まず、下記のpdfの1-2ページ目をご覧下さい https://www.morikita.co.jp/data/mkj/091782mkj.pdf 式(4)までは計算できました。 そして、式(5)が式(1.2)に相当するのは分かっています。 あとは、出力方程式の係数であるCを決めるだけですが、その導出方法が分かりません。 ちなみに、式(1.1)のAに相当するのは-D/Cで、Bに相当するのは1/Cですよね? ドット付きx(t)は時間に関する微分なので、時間で積分してやればx(t)が出るのですか? ※なお、式(1.2)のCと、熱容量のCはまったく関係ありませんので、ご注意下さい。 ではよろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8024/17152)
回答No.1

> 出力方程式の係数であるCを決めるだけですが、その導出方法が分かりません。 「炉内の温度を出力とすれば」と言っているように,出力方程式の係数であるCが1になるように出力変数を決めたのです。 > ちなみに、式(1.1)のAに相当するのは-D/Cで、Bに相当するのは1/Cですよね? > ドット付きx(t)は時間に関する微分なので、時間で積分してやればx(t)が出るのですか? どちらも,その通りです。

futureworld
質問者

お礼

ベストアンサーを差し上げます。 なるほど、「炉内の温度を出力とすれば」の一文で、Cが1になるように出力変数を決めたのですね。 ありがとうございました。

関連するQ&A

  • 偏微分方程式と常微分方程式

    物質濃度をC、時間をt、座標をx、物質の分子拡散係数をνとすると分子拡散による物質濃度の時空間変化は以下の偏微分方程式によって記述される。これについて以下の問いに答えよ。 ∂C/∂t=ν((∂^2)C/∂x^2) (1)C(x,t)=X(x)T(t)と仮定することにより、X(x)およびT(t)に関する常微分方程式をそれぞれ導出せよ。 (2)(1)での2つの常微分方程式の一般解をそれぞれ求めよ。 (3)上記拡散方程式は一般に放物型と言われる偏微分方程式に分類される。これとは別の楕円型と言われる偏微分方程式を1つ、数式で記述せよ。 困っているのは(2)の問題です。 以下のようなwebサイトを見つけました。 http://www12.plala.or.jp/ksp/mathInPhys/partial/ これに沿って問題を解いていったとき、一般解をどのようにするべきか迷いが生じました。今回の問題では初期条件や境界条件はないため、一般解はλが正、ゼロ、負のとき全ての場合の一般解を求めなければならないということですか? 後もう1点、もしよければ、楕円型の微分方程式として有名な物理現象、あるいは式を教えていただけないでしょうか? ヨロシクお願いしますm(_ _)m 特に(2)の問題に関する質問、ヨロシクお願いします。。。

  • 微分方程式についての質問です。

    微分方程式についての質問です。 問題となる方程式は (x+1)y" - (x+2)y' = 0 です。 よろしくお願いします。 また、定数係数でない2階微分方程式を、 公式を使わずに導出するコツなどがありましたら、 是非教えてください。

  • 未定係数法は一階の線形微分方程式にも使えるのでしょうか? 

    未定係数法は一階の線形微分方程式にも使えるのでしょうか? 一階の線形微分方程式の解き方は dy/dt + p(t)y = g(t) のとき e^∫p(t)dt を両辺にかけて そのあとで両辺を積分してyについて解く と習いました。 そして、未定係数法は2階の線形微分方程式を解く方法の一つとして、 習いました。 ここで疑問に思ったのが、 この未定係数法は一階の線形微分方程式にも使えるのでしょうか? だとしたら下のような手順でよいのでしょうか? 同次式: dy/dt + p(t)y = 0 の一般解を求める (積分定数が残る) 非同次式: dy/dt + p(t)y = g(t) の特殊解を求める (積分定数はない) yの一般解 = 同次式の一般解 + 特殊解 よろしくお願いします。

  • 電気回路 1階の連立微分方程式

    「2階の微分方程式」を「1階の連立微分方程式」に書き換える意義を教えて下さい。 まずは、添付画像(本への書き込み) と 原著のpdfの13ページ目(演習1.2、本でいうと3ページ目)をご覧ください: https://www.morikita.co.jp/data/mkj/091782mkj.pdf 階数の引き下げ方は理解しています。ただ、なぜ引き下げるのかが不明です。 分からないのが、式(7)から式(9)にする過程で、すべてを右辺に移項して、左辺をゼロにしているようです。 キルヒホッフの第二法則「一周すると総和はゼロ」に基づいてだと思います。 しかし、式(9)になると、その左辺のゼロが d/dt [ x[1], x[2] ]' ←縦書き に書き換わっています。 どういうことですか? しかも、d/dt [ x[1], x[2] ]'のx[2]って元々x[1]の微分ですよね? d/dt [ x[2] ]なら更に微分するということになりますよね? つまり、x[1] = qから辿ると、2階の微分 d(dq/dt)/dt) になります。 これは式(2)のLの項の (d^2 q)/(dt^2) と同じ意味ですか? 今まで私が知っている微分方程式は y' = 2(x-1) の両辺をxで積分して y = x^2 - 2x + C …のように、左辺はyでした。 今回、yは式(10)の左辺にありますね。 式(9)と式(10)の関係が不明です。 よくよく考えたら、私にとって連立微分方程式を扱うのは今回が初めてでした。 過去に終わらせた微分方程式の本には連立微分方程式は載っていません。 ネットで2時間検索したのですが、納得いく答えは見つかりませんでした。 どうか納得いくように教えて下さい。よろしくお願いします。

  • 定数係数でない2階微分方程式

    (x + 1) y'' + x y' - y = 0 という方程式を以下の手順により解け (1) y = u exp(- x)がこの微分方程式の解になるためにyがみたすべき微分方程式を求めよ。 この(1)で(x + 1) u'' - (x + 2) u' = 0 という微分方程式が出てきます。 (2) 前問で求めた微分方程式を解け ということで (x + 1) u'' - (x + 2) u' = 0という微分方程式を解くのですが これの解き方がわかりません。 積分すればいいのかと思ったのですが 2項目の積分をどうしていいかわからずに結局解けませんでした。 どうやってとけばいいか教えてください。

  • 積分を含んだ微分方程式が解けません(>_<)

    解いていただきたい微分方程式は以下の式です。 4∫x dt = t^2 ・ x’-2t x x=x(t)で、積分範囲はtが0から∞、t=∞のときはx=0です。 よろしくお願いします。

  • 無限領域での波動方程式の計算に出てくる偏微分方程式

    波動方程式の計算に出てくる、偏微分方程式の解の計算方法が分かりません。 本から引用します: ここで、弦を伝わる波の問題などで使われる波動方程式 { (∂^2) u(x,t) } / (∂t^2) - c^2 * { (∂^2) u(x,t) } / (∂x^2) = 0 (式7.33) を考えてみよう。ここで、u(x,t)は座標xの位置での時刻tにおける弦の変位を表わし、cは正の定数とする。そして、∞に長い弦を考え(すなわち、-∞<x<∞の範囲で考え)、境界条件は、すべての t>=0 に対して u(x,t)→0 (式7.34) (x→±∞) を満たすとする。つまり、無限遠では波が存在しないとする。更に初期条件は u(x,0) = f(x) { ∂u(x,t) } / ∂t |t=0 = 0 (式7.35) とし、ここでf(x)は x→±∞ で0に近付く絶対可積分な関数であるとする。また、上式の縦棒(|)の後のt=0は、「t=0での偏微分の値」という意味である。(式7.35)のように初期条件として2つの式を与えるのは、(式7.33)がtについて2階の微分方程式だからである。今の場合、xの無限領域での関数u(x,t)を取り扱うので、フーリエ変換を使った解法を用いればよい。 例題 初期条件(式7.35)と境界条件(式7.34)を満たす(式7.33)の解を求めよ。 [解] u(x,t)のxについてのフーリエ変換を F(k,t) = ∫[-∞,∞] u(x,t) e^(-ikx) dx (式7.36) と表す。(式7.33)にe^(-ikx)を掛け、xについて-∞から∞まで積分すると、熱伝導方程式(式7.20)を導いたときと同様な考え方から、 { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 (式7.37) ←質問箇所 を得る。この微分方程式の解は、 F(k,t) = C[1](k) e^(ickt) + C[2](k) e^(-ickt) (式7.38) ←これをどう導いたのかが不明 であることが、代入すれば確かめられる。ここで、C[1](k)、C[2](k)は任意のkの関数で ある。 ・・・以上、引用終わり。 私は偏微分方程式自体、変数分離とかいう方法でサラッとやっただけで、上記の方法は見たことがありません。ネットで検索しましたが、同様の式を見つけることが出来ませんでした。そんな私が敢えて解こうとすると: { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 第2項を右辺に移項する { (∂^2)F(k,t) } / (∂t^2) = - (c^2) * (k^2) * F(k,t) 左辺の(∂t^2)と右辺のF(k,t)を交換する { (∂^2)F(k,t) } / F(k,t) = - (c^2) * (k^2) * (∂t^2) 両辺をtで積分する(もう既に未知の領域…きっと2乗が減って1乗になるのでしょう…) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * ∫(1)(∂t^2) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * t (∂t) + C[1](k) もう一度両辺をtで積分するだろう雰囲気を漂わせたところでやめておきます。 もしかしたらln{F(k,t)}を積分しなければならないのでは、と思ったら思考が停止しました。多分、既に間違っているのでしょう。 …ということで、この偏微分方程式の解き方を教えて下さい。お願いします。

  • 微分方程式  積分方程式 について

    微分方程式y'=x+1について、 解は、 dy/dx=x+1 変数分離を行って、 dy=(x+1)dx 両辺を積分すると、 ∫dy=∫(x+1)dx・・・(※) よって、 y=1/2x^2+x+C (※)の部分ですが、これは積分方程式と 言っていいのでしょうか? 積分方程式って、何なんでしょうか? Wikipediaを見たのですが、わかりませんでした・・・ 以上、ご回答よろしくお願い致します。

  • 変数係数の微分方程式の解き方

    変数係数斉次線形微分方程式y''+P(x)y'+Q(x)y=0の特殊解または、基本解系はどのように求めることができるのでしょうか。

  • (信号処理で) 線形微分方程式で係数が定数のシステム について

    (信号処理で)  線形微分方程式で係数が定数のシステム について 1.それが 線形であること 2.そして、時不変であること これらはどのようにして証明というか、確認できるのでしょうか? たとえば入力がx(t)で出力がy(t)とすると 一階の線形微分方程式で係数が定数の場合の例: dy(t)/dt + ay(t) = bx(t) このシステムを考えたとき、どのようにして線形 そして時不変であることを確認できるのでしょうか? 上の式の形のまま確認する方法はあるのでしょうか? それとも、 先に解いて、y(t) = ~~~ の形にしてから確認するのでしょうか? (とくに、時不変になるという確認方法が知りたいです。) よろしくおねがいします。