• ベストアンサー
  • 困ってます

電気回路 1階の連立微分方程式

「2階の微分方程式」を「1階の連立微分方程式」に書き換える意義を教えて下さい。 まずは、添付画像(本への書き込み) と 原著のpdfの13ページ目(演習1.2、本でいうと3ページ目)をご覧ください: https://www.morikita.co.jp/data/mkj/091782mkj.pdf 階数の引き下げ方は理解しています。ただ、なぜ引き下げるのかが不明です。 分からないのが、式(7)から式(9)にする過程で、すべてを右辺に移項して、左辺をゼロにしているようです。 キルヒホッフの第二法則「一周すると総和はゼロ」に基づいてだと思います。 しかし、式(9)になると、その左辺のゼロが d/dt [ x[1], x[2] ]' ←縦書き に書き換わっています。 どういうことですか? しかも、d/dt [ x[1], x[2] ]'のx[2]って元々x[1]の微分ですよね? d/dt [ x[2] ]なら更に微分するということになりますよね? つまり、x[1] = qから辿ると、2階の微分 d(dq/dt)/dt) になります。 これは式(2)のLの項の (d^2 q)/(dt^2) と同じ意味ですか? 今まで私が知っている微分方程式は y' = 2(x-1) の両辺をxで積分して y = x^2 - 2x + C …のように、左辺はyでした。 今回、yは式(10)の左辺にありますね。 式(9)と式(10)の関係が不明です。 よくよく考えたら、私にとって連立微分方程式を扱うのは今回が初めてでした。 過去に終わらせた微分方程式の本には連立微分方程式は載っていません。 ネットで2時間検索したのですが、納得いく答えは見つかりませんでした。 どうか納得いくように教えて下さい。よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数189
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • f272
  • ベストアンサー率45% (5179/11468)

> ただ、なぜ引き下げるのかが不明です。 2階微分方程式よりも1階微分方程式の方が簡単だから。 > 式(7)から式(9)にする過程で、すべてを右辺に移項して、左辺をゼロにしているようです。 そんなことはしていません。例えば式(7)を dx2/dt=(1/LC)x1+(-R/L)x2+(1/L)vi に変形しているだけです。 > その左辺のゼロがd/dt [ x[1], x[2] ]' ←縦書きに書き換わっています。どういうことですか? 式(6)はdx1/dt=x2ですから,上の式と合わせると式(9)になります。 > これは式(2)のLの項の(d^2 q)/(dt^2)と同じ意味ですか? 同じ意味です。 > 式(9)と式(10)の関係が不明です。 式(9)は式(6)と式(7)を書き換えたもの,式(10)は式(8)を書き換えたものです。 特に難しいことは何もありません。 y' = 2(x-1)の両辺をxで積分してy = x^2 - 2x + C との比較で言えば dx/dt = 2(t-1)の両辺をtで積分してx = t^2 - 2t + C のようなことをするわけです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ベストアンサーを差し上げます。 完全に理解しました。 正直、5分前まで「dx2/dtの計算方法は分かったのですが、dx1/dtはどうやって求めたのですか?」と訊こうと思っていました。なるほど、既に式(6)に書かれていたんですね。式(7)から出てくるものだとばかり思っていました。 お陰様で、他の部分も理解できました。ありがとうございました!

質問者からの補足

ベストアンサーを差し上げますので、もうしばらくお待ちください。m(_ _)m

関連するQ&A

  • 連立微分方程式

    点P(x,y)は連立微分方程式 dx/dt=y dy/dt=-x を満たすものとする。t=0で原点以外の点から出発した点P(x,y)は、tが増加するにつれてどのようにふるまうか述べよ。図を用いてもよい。 この問題の解き方がよく分かりません。 連立微分方程式について、色々な文献を見てみたのですが、どうもいまいちです。 上の連立方程式を2つともdt=のかたちにして、dx/y=dy/-xという式にし、変数を分離して両辺を積分して・・・すると、x^2+y^2=Cという式に なりました。 円の方程式っぽいです。 でも、tは消えてしまい・・・ よく分からなくなってきました。 そもそもここまでの解き方も自分は間違っているのでしょうか?? ご意見やヒント、解答ヨロシクお願いしますm(_ _)m

  • 連立微分方程式

    x=x(t), y=y(t)をtの関数として、次の連立微分方程式を考える。    dx/dt=2x+y dy/dt=x+2y (1)z=x+y, w=x-yとおいて、z,wについての微分方程式に書き換えなさい。 z+w=2x, z-w=2yつまり、x=(z+w)/2, y=(z-w)/2 これを、x,yにするだけでよいのでしょうか?

  • 2階の微分方程式

    こんにちは。現在、微分方程式に取り組んでいます。 おそらくとても単純な所で詰まってしまって、困っています。よろしくお願いします。 式(1) G=dx/dt=py-ax+i 式(2) F=dy/dt=qx-by+j   を使って (1)G=F=0の時、x0、y0を求める (2)n=x-x0,m=y-y0とし、n(t),m(t)それぞれに対する2階微分方程式を求めよ という問題です。 (1)は連立方程式を解いて x=(bi+pj)/(ab-pq)  y=(aj+qi)/(ab-pq) までは出せたのですが、これらをそれぞれx0,y0と考えてしまってよいのでしょうか? 「x,yの2階の微分方程式にする」ようなヒントがあったのですが、そのヒントでかえって混乱しています。 (2)はx0、y0で詰まってしまったので。。。止まっています。 すみませんが、よろしくお願いします。

  • 電気回路 1階微分方程式の問題

    次の問題を教えてください。 ●インダクタンスLと抵抗Rからなる直列回路が、電圧V0の直流電源につながる。時刻t=0で回路のスイッチを閉じる。 1)時刻tで、回路に流れる電流をx(t)[A]とする。キルヒホッフの法則を用いて電流xに対する微分方程式を求めよ。 v0=L(dx)/(dt)+Rx でよいのでしょうか。 2)この微分方程式について、その斉次方程式の一般解xt(t)をもとめよ。 (dx)/(dt)+R/L・x=0 xt(t)=Ae^(-r/L)t でいいですか。

  • 連立微分方程式の問題

    x, u, v,を実数,a, τを実定数とする。次の連立微分方程式を解いてu, vを求めよ。 式は添付画像をご参照ください。 という問題です。 vを消去してuの微分方程式に書き換えたところ d4y/dx4(u)+(4a^2)(d4y/dx4)(u)=0 という式が得られてこの式を解くことができなくて... 私は間違っているのかそれとも別のやり方でやるべきですか。 この連立微分方程式の解き方をご存知の方がいらっしゃいましたら、ご指導お願いします。

  • 連立微分方程式

    x=x(t), y=y(t)をtの関数として、次の連立微分方程式を考える。    dx/dt=2x+y dy/dt=x+2y (1)z=x+y, w=x-yとおいて、z,wについての微分方程式に書き換えなさい。 z,wを無視して解くことはできるのですが z=x+y, w=x-yに置き換えるということがよくわかりません。 初歩的な質問ですがよろしくお願いしますm(__)m

  • 連立微分方程式

    この微分方程式が解けません。 ご教授願います。 kは正の定数とする {x1}" = d(2){x1}/dt(2) {x2}" = d(2){x2}/dt(2) として、 連立微分方程式 _ | {x1}" = -k{x1}-k({x1} - {x2}) < |_{x2}" = -k({x2} - {x1})-k{x1} の一般解を求めよ。 どうしても解けません。 解き方を教えてもらいたいです。 よろしくお願いします

  • 連立微分方程式

    連立微分方程式の問題です。 dx/dt = -3x+y dy/dt = 5x+y 回答お願いします。

  • 連立微分方程式

    連立微分方程式 dx/dt=5x+4y dy/dt=-x+y の一般解を求めて下さい。

  • 微分方程式

    微分方程式を解き方についての質問です。 dx/dt=(2a-3x)/(2a-x) (aは定数) という微分方程式なのですが、これはどういう手順で解いていけばいいのでしょうか?左辺と右辺にxとtを分けるというのはわかるのですが、その後どうしていけばいいかわかりません・・・。 どなたかよろしくお願いします。