- ベストアンサー
- すぐに回答を!
三角関数のcos合成のメリットについて
教えてください。 『1対1対応の演習 数学II』にcos合成にすることのメリットが書かれてあるのですが、よく理解できておりません。 「最大・最小を求める問題で、変数に制限があるとき、αが有名角でなければ、sinよりもcosで合成した方がどこで最大・最小になるかが分かり易いだろう」 お分かりの方がいらっしゃいましたら、アドバイスお願い致します。
- yassanmama
- お礼率100% (73/73)
- 回答数3
- 閲覧数387
- ありがとう数3
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.3
- info222_
- ベストアンサー率61% (1050/1703)
>「最大・最小を求める問題で、変数に制限があるとき、αが有名角でなければ、sinよりもcosで合成した方がどこで最大・最小になるかが分かり易いだろう」 具体的にcos合成とsin合成での最大・最小問題を解いて比較して見ればわかるでしょう。 y=f(x)=3cos(x)-2sin(x) (0<=x<=pi) の最大値・最小値をを求めよ。 [cos合成] y=(√13)cos(x+α), tanα=2/3 (pi/6<α<pi/4), α<=x+α<=pi+α x+α=α (x=0) で最大値f(0)=3, x+α=pi(x=pi-tan^-1(2/3) )で最小値f(pi-tan^-1(2/3) )= -√13 [sin合成] y= -(√13)sin(x-α), tanα=3/2 (pi/4<α<pi/3), -α<=x-α<=pi-α x-α=-α (x=0) で最大値f(0)=3, x-α=pi/2 (x=pi/2+tan^-1(3/2) )で最小値f(pi/2+tan^-1(3/2) )= -√13 じっくり比較してみてください。 どちらの合成法の解答の方がわかりやすいと思いますか? どちらかと言えば, xの範囲が0<=x<=pi と指定されることが多いので cos合成法の方がよく使われているようですね。
関連するQ&A
- 三角関数の合成の手前で。
問題がy=2sin(x-π/6)+3cosx なんですが、コレの最大値最小値を求めるもの。 なんか合成する前に、 y=√3sinx+2cosx に変化させてるんです。 そのあと y=√7sin(x+α) [ただし、αはsinα=2/√7 , cosα=√3/√7 を満たす角] と合成してあります。 合成の前の変化がどうやってるのかわかりません。 あと、なぜアルファーなのかもわかりません。 アドバイスお願いします。
- ベストアンサー
- 数学・算数
その他の回答 (2)
- 回答No.2
- nihonsumire
- ベストアンサー率27% (415/1535)
先の回答者の方がおっしゃる通りです。両方で、問題を解いてみたらどうですか。あなたが、扱いやすいと思う方で解けばいいと思いますよ。
質問者からのお礼
nihonsumireさん ご回答頂きありがとうございました。
- 回答No.1
- f272
- ベストアンサー率45% (5271/11631)
sinでもcosでもどちらでも変わらないとしか思えませんが...
質問者からのお礼
f272さん ご回答頂きありがとうございました。
関連するQ&A
- 三角関数
(1) 0≦θ<2πのとき、関数y=cos^2θ+2sinθの最大値と最小値とθについて。 y=cos^2θ+2sinθ =(1-sin^2θ)+2sinθ =-sin^2θ+2sinθ+1 =-s^2+2s+1 =-(s^2-2s)+1 =-(s-1)^2+2 (-1≦s≦1) (2) 0≦θ<2πのとき、関数y=8cos^2θ-8sin^2θ+1の最大値と最小値とθについて。 y=8(-sin^2θ+1)-8sin^2θ+1 =-8sin^2+8-8sin^2θ+1 =-16sin^2+9 =-(16sin^2-9) (3) 0≦θ<2πのとき、関数y=2sin^2θ+2cosθ+4の最大値と最小値とθについて。 2sin^2θ+2cos^2θ=2 2sin^2θ=2-2cos^2θ y=2-2cos^2θ+2cosθ+4 =-cos^2θ+2cosθ+6 (1)(2)(3)途中まであっていますか? (1)(2)(3)のやり方を教えて下さい。。。
- 締切済み
- 数学・算数
- 三角関数の合成の問題について
0°≦x≦90°のとき、2sinx+cosxの最大値と最小値を求めよ。(大学への数学IIP68) という問題があるのですが、 解答) 図1のようにαを定めると、45°<α<90°であり、 (図1とはx軸方向に1、y軸方向に2を取りその棒の距離を√5、なす角をαとした図です。) 2sinx+cosx=√5[cosx*(1/√5)+sinx*(2/√5)] =√5(cosx*cosα+sinx*sinα)=√5cos(x-α) 0°≦x≦90°により、-α≦x-α≦90°-αであるから、 x-α=0°のとき最大値√5を取り、 x-α=-α、つまりx=0°のとき最小値2sin0°+cos0°=1を取る。 (おわり) 何故最初にわざわざ45°<α<90°と置くのか分かりません・・・ どうかよろしくお願い致します。
- ベストアンサー
- 数学・算数
- 三角関数の最大・最小の問題
「0≦θ≦π/2において、 (2cosθ-3sinθ)sinθの最大・最小を求めよ」という問題がわかりません。 これは、与式=3/2cos2θ+sin2θ-3/2の様に変形して、合成すればいいんでしょうか? アドバイス願います。
- 締切済み
- 数学・算数
- 三角関数の合成について
ただいま浪人中のものですが、現役の頃三角関数の合成を (x軸にsinθ、y軸cosθにとして)座標を使って解く方法を習ったのですが、合成後がsinθなる時はわかるのせすが、合成後がcosθになるときの、座標使っての三角関数の合成の仕方を教えて頂けないでしょうか?お願いします。m(__)m
- ベストアンサー
- 数学・算数
- 三角関数 最大値、最小値
0°≦θ≦180°とする。 (1) x=sinθ+cosθ のとる範囲を求めよ。 (2) y=2(sin^3θ+cos^3θ)+(sinθ+cosθ)をxを用いてあらわせ。 (3) yの最大値と最小値を求めよ。 という問題です。 (1)-√2≦x≦√2 (2)y=-x^3+4x と一応なりました。 ここで(3)なのですが、yの最大値最小値はy=-x^3+4xを微分して増減表を書いて出していいのでしょうか? アドバイス宜しくお願いします
- ベストアンサー
- 数学・算数
- 三角関数で範囲
y=cosX-2sinX という問題です。 合成すると y=√5cos(X+α) ここで、 だだしαはcosα=1/√5 sinα=2/√5 となっています。 計算上 cosα=2/√5が正しくないですか?・・・★ 例を書くと、 cosX+sinXでも √2cos(X + 1/√2) つまりcosα=1/√2になってるわけで、 ★と同じことをしているわけだから、 あれは間違っているのでは・・・ あとまだ解答は続くんですが、 0≦X≦π より α ≦ X+α ≦ π+α ここまでは納得ですが、次に -1≦cos(X + α)≦1/√5 これは円をかくと大体わかりました、 しかし次のいきなり答え。 最大値1(X = 0のとき) 最小値-√5(X = π-α のとき) π-αっていうのもよくわからないです。 アドバイスお願いします・・
- ベストアンサー
- 数学・算数
質問者からのお礼
info222_さん ご回答頂きありがとうございました。 とても参考になりました。