• ベストアンサー
  • すぐに回答を!

三角関数の合成

3cosθ+4sinθ の最大値と そのときのcosθとsinθを求めよ。(0<θ<π/2) という問いなのですが、最大値はπ/2+α=0のときに5としたのですがそのときのθについてもとめかたが分かりません。 恐らく合成の公式の使い方がよくわかってないと思います。そのことを踏まえて教えてくださる方お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数694
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

>最大値はπ/2+α=0のときに5としたのですが ここが疑問です。 まず、合成して 3cosθ+4sinθ =5sin(θ+α)としますが条件を確認しておくことが大切です。 「ここで、sinα=3/5 cosα=4/5 0<α<π/2とおける」 0<θ+α<πからθ+α=π/2のとき最大値5をとる このとき、最大値をとるθの値はθ=π/2-αから cosθ=cos(π/2-α)=sinα sinθ=sin(π/2-α)=cosα となってcosθとsinθの値が出てきます

共感・感謝の気持ちを伝えよう!

質問者からのお礼

理解できました!ありがとうございました。

関連するQ&A

  • 三角関数の合成

    三角関数の合成 π/6≦θ≦5/6πのとき、sin{2θ-(π/6)}-cos2θ の最大値と最小値を求めよと言う問題があります。 この式が √3/2 sin2θ-3/2 cos2θ という式になるのはわかりました。でもここからどのようにして合成するのでしょうか? 三角関数の合成の式が√(a^2+b^2) sin(θ+α) なので√3 sin(2θ+α) になるのはわかるのですがどうやってαの部分を出すのかわかりません… 図を書いて求めようとしたのですがさっぱりで… どなたか教えてください。よろしくお願いしますm(__)m

  • 三角関数の合成公式 がおかしい?

    -3sin(x) + 3cos(x) → (1) を合成公式であらわすと、 -3sin(x) + 3cos(x) = √((-3)^2 + 3^2) * sin (x+y) = 3√(2) * sin(x+y) ただし y = arctan(b/a), a=-3, b=3 つまり = 3√(2) * sin(x+arctan(3/-3)) = 3√(2) * sin(x-π/4) → (2) となるはずです。しかし、例えばxにπを入れて(1)と(2)を計算してみると、 (1)-3sin(π) + 3cos(π) = -3 (2)3√(2) * sin(π-π/4) = 3 となり、(1)と(2)の答えが同じになりません。どうしてでしょうか?

  • 三角関数

    関数y=3cos^2θ-8snθcosθ+5sin^2θ(0≦θ≦π/2)の最大値、最小値を求めよ。 という問題なんですが 解説に =3-4*2sinθcosθ+2sin^2θ =3-4sin2θ+2*1-cos2θ/2・・・(1) =4-(4sin2θ+cosθ)・・・(2) =4-√(17)sin(2θ+α) ・・・ と書いてあるんですが (1)と(2)の変形はどうやっているんでしょうか? あと 積和の公式sinθcosθ=1/2{sin(θ+θ)+sin(θ-θ)}の sin(θ-θ)の部分はsin0になるんですがsin0=0でいいんでしょうか? 回答よろしくお願いします。

その他の回答 (1)

  • 回答No.2

合成は考え難いところがある。こんなのは、座標を使うと良い。 最大値だから合成でも良いが、これが最小値なら合成は考え難い。 cosθ=x、sinθ =yとすると、x^2+y^2=1 ‥‥(1)、x>0、y>0 ‥‥(2) の時、3x+4y=kの最大値を考えると良い。 それは、円:x^2+y^2=1と直線:3x+4y=k ‥‥(3)が接する時が、最大。 点(0、0)と直線:3x+4y=kが接するのは、点と直線との距離の公式より、|k|/5=1の時。つまり、明らかに k>0よりk=5. 後は、k=5の時に、(1)と(3)を連立して解くだけ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

そういったアプローチもあるんですね。 ありがとうございました。

関連するQ&A

  • 三角関数の合成の手前で。

    問題がy=2sin(x-π/6)+3cosx なんですが、コレの最大値最小値を求めるもの。 なんか合成する前に、 y=√3sinx+2cosx に変化させてるんです。 そのあと y=√7sin(x+α) [ただし、αはsinα=2/√7 , cosα=√3/√7 を満たす角] と合成してあります。 合成の前の変化がどうやってるのかわかりません。 あと、なぜアルファーなのかもわかりません。 アドバイスお願いします。

  • 三角関数

    3sinθ+4sinθの0≦θ≦πでの最大値は■であり、最小値は■である。また、π/4≦θ≦π/2での最大値は■であり、最小値は■であるという問題で解答に3sinθ+4sinθ=5sin(θ+α) π/4≦θ+α≦π/2よりsin(π/4+α)≧θ+α≧sin(π/2+α)とあるがなぜ符号がさかさまになるんですか??

  • 三角関数 合成

    0≦θ≦πの時、次の方程式不等式を解け。 (1)cosθ+√3sinθ+1=0 (2)cos2θ+sin2θ+1>0 私も一応考えましたが、いまいち分かりませんでした。 とりあえず私の回答は (1)cosθ+√3sinθ+1=0 cosθ+√3sinθ=-1 2sin(θ+π/6)=-1 0≦θ≦πより π/6≦θ+π/6≦7/6π sin(θ+π/6)=-1/2 θ+π/6=7/6π θ=π (2)は分かりません(´・_・`) 回答お願いします

  • 数学 三角関数

    関数 y=3cosθ+4sinθ (0≦θ≦π/2) について、 (1) yのとりうる値の範囲は□≦y≦□である。 (2) yが最大値をとるとき、sinθ=□、cosθ=□である。 (3) yが最大値をとるとき、z=3sin2θ+4cos2θの値は□である。 □の値を教えてください。 途中計算も欲しいです。 よろしくお願いします。

  • 三角関数。

    こんにちは。 よろしくお願いいたします。 【1】0≦θ≦πのとき、√3sinθ+cosθ=tとおくと、tのとりうる値を求めよ。 これが分からないのですが、解説にはいきなり、 t=2sin(θ+π/6)で・・・ と書いてあるんですが、そこから分かりません。 【2】cos2θ+√3sion2θ=√3 これを合成して2で割ると sin(2x+π/6)=√3/2 が分かりません。

  • 三角関数の問題

    三角関数の問題  「(1-conθ)/sinθ+(1-sinθ)/conθ の最大値、最小値を求めよ   ただし 0<θ<π/2」 という問題なのですが、式を変換して  (sinθ+cosθ-1)/sinθcosθ となって、三角関数の合成と二倍角の公式で  { 2√2sin(θ+π/4)+2 }/sin2θ となりましたがそこから先が分かりません。合成などしなくて良いのでしょうか。誰かヒントをください!!!

  • 三角関数

    ABCと長方形PQRCを考える。ただし、点Aは辺PQ上(頂点を除く)にあり、点Bは辺QR上(頂点を除く)にあるものとし、∠BAQ=θ(0<θ<π/3)とする。 AQ=cosθ AP=√3sinθ CP=√3cosθ 長方形の面積をSとすると。 S=3/2sin2θ+√(3)/2cos2θ+√(3)/2 さらに三角関数の合成を行うと S=√3sin(2θ+π/6)+√(3)/2と変形できる。 0<θ<π/3のとき π/6<2θ+π/6<5π/6だから 2θ+π/6=π/2=θ=π/6 のとき最大値 S=√3・sinπ/2+√3/2 =√3+√3/2 =(3√3)/2 なぜ 2θ+π/6=π/2=θ=π/6 のとき最大値と分かるのでしょうか。

  • 数学、三角関数

    問題:0≦θ<2πとする。θが、 (cosθ-3/2)^2+(sinθ+√3/2)^2≧4 を満たすとき次の問いに答えよ。 i)θのとり得る値の範囲を求めよ。 回答:π/3≦θ≦4π/3 ii)√3sinθ-cosθのとり得る値の範囲を求めよ。 回答:f(θ)=√3sinθ-cosθとすると、 f(θ)=2sin(θ-π/6) i)から、 π/6≦θ-π/6≦7π/6であるから、・・・(1) -1≦f(θ)≦2 ・・・(2) よって、 -1≦√3sinθ-cosθ≦2 疑問:ii)の回答の、(1)から(2)にするやり方がわかりません。どうして、≦2になるんですか? お願いします。

  • 三角関数の問題です。

    三角関数の問題です。 cos3θ+sin2θ+cosθ>0を満たすθの範囲を求めよ。ただし、0≦θ<2πとする。 という問題です。次の様に解答したのですが、間違いや、つっこまれそうな所があったら指摘して下さると助かります。 cos3θ=4cos^3θ-3cosθより、 cos3θ+sin2θ+cosθ=4cos^3θ-3cosθ+2sinθcosθ+cosθ =cosθ(4cos^2θ+2sinθ-2)=cosθ{4(1-sin^2θ)+2sinθ-2} =cosθ(-4sin^2θ+2sinθ+2)=-2cosθ(2sinθ+1)(sinθ-1)>0 ∴cosθ(2sinθ+1)(sinθ-1)<0 (1)cosθ>0のとき、(2sinθ+1)(sinθ-1)は負 2sinθ+1>0, sinθ-1<0 のとき、これを満たすθの範囲は、0≦θ<π/2,11/6π<θ<2π 2sinθ+1<0, sinθ-1>0 のとき、これを満たすθは存在しない。 (2)cosθ<0のとき、(2sinθ+1)(sinθ-1)は正 2sinθ+1>0, sinθ-1>0 のとき、これを満たすθは存在しない。 2sinθ+1<0, sinθ-1<0 のとき、これを満たすθの範囲は、7/6π<θ<3/2π (1),(2)から、求めるθの範囲は、0≦θ<π/2,7/6π<θ<3/2π,11/6π<θ<2π 宜しくお願いします。

  • 三角関数の合成と最小値について

    『0°≦θ≦90°のとき、sinθ+√3cosθの最小値を求めよ』という問題が分からないでいます。 以下に途中までの考え方を書きます。(解答は1です) sinθ+cosθを合成して文字を1種類にすると、 (与式)=2sin(θ+π/3) 0°≦θ≦90°は0≦sinθ≦1だから、不等式は 0≦2sin(θ+π/3)≦1 0≦sin(θ+π/3)≦1/2 θ+π/3=tとおくと、 0≦sint≦1/2 0°≦θ≦90°は0≦θ≦1/2πだから、、 0≦sin(θ+π/3)≦1/2π π/3≦θ+π/3≦(1/2+1/3)π π/3≦θ+π/3≦5/6π ここまでは考えつき、次にtの範囲を調べれば良さそうなのはなんとなく想像はつくのですが、具体的にどう続きを持っていけば良いのか困っています。 ご回答どうぞよろしくお願いいたします。