ベストアンサー 複素関数が正則であるための条件を求める 2017/07/18 18:45 以下の画像のような条件で 1.f(z)がz=0で微分可能であるためのa,bの条件を求めよ 2.f(z)がz=0で正則であるためのa,bの条件を求めよ という問題があるのですが2番がわかりません。 1番はu,vをそれぞれx,yで偏微分してコーシー・リーマンの関係式にあてはめると a(1 + b) = -1 になりました。 2番がわかる方、計算するための条件、計算手順などを教えていただけませんでしょうか。 よろしくお願いします。 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー noname#232123 2017/07/18 19:34 回答No.1 2) Cauchy-Riemannの方程式が成立することにより、 (a, b)=(-2, -1/2) となります。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 複素関数の正則性。 領域 D が実軸に関して対称であると仮定する。w = f(z) が正則ならば,w = f(¯z). も正則であることを示せ。 という問題が分かりません。 最終的に、「コーシー・リーマンの関係式を満たすので正則」と結論づけたいのですが、実際の関数が与えられていないため、∂u/∂xや∂v/∂yなどの計算ができなくて困っています。 どうすれば良いのでしょうか? よろしくお願いします。 複素関数の正則性。 誤って、回答締め切りをしてしまったため、再度立てさせていただきます。すみません。 領域 D が実軸に関して対称であると仮定する。w = f(z) が正則ならば,w =¯f(¯z). も正則であることを示せ。 という問題が分かりません。 最終的に、「コーシー・リーマンの関係式を満たすので正則」と結論づけたいです。 z=x+iy として、f(x-iy)とします。 fが具体的に与えられていないため、どのように∂u/∂xや∂v/∂yなどの計算を行えば良いのかが分かりません。 どうすれば良いのでしょうか? よろしくお願いします。 微分可能と正則 ω=f(z)がZ=a∈Dで微分可能である。 ω=f(z)がZ=aで正則である。 この2つの違いを明確に教えてください。 よくわからなくて困っております。 もう一つあります。 ω=f(z)=u(x,y)+iv(x,y)がD上正則であることの必要条件をコーシー・リーマンの関係式を用いて表わすにはどうしたらいいのですか? 複素関数の証明 たびたびすいません>< (1)関数f(z)=u(x,y)+iv(x,y)が正則なら △lfl^2=4lf'l^2≧0 がなりたつ (2)さらにfが零点を持たないとき △loglfl=0 がなりたつ 以上を証明するのですが、(1)は普通に作用させたらu,vの2階微分が消えず、また1階微分も2乗になりませんでしたf^^;(2)も2階微分が消えないのです><是非教えてください。。2階微分にもコーシー・リーマンのような方程式があるのですか? f(z)=|z|^2はz=0では正則ではないことを示せ。 f(z)=|z|^2はz=0では正則ではないことを示せ。 解答 f'(0) = lim[z->0] {f(z)-f(0)}/z = lim[z->0] z~ となり、z=0で微分可能。 z=0で正則とは0のある近傍で正則ということであるが、 z≠0のときf(z)=x^2+y^2はコーシー・リーマンの方程式を満たさない。 …と載っているんですが、微分可能性にはついては先ほど質問し解決しました。 今度は正則について確認です。 f(z)={√(x^2+y^2)}^2 =x^2+y^2 =u+iv で 実部uはx^2+y^2 虚部vは0 u_x = 2x ≠ v_y =0 v_x = 0 ≠ u_y = 2y これらが一致しないので正則ではない …という答えでいいですか? 間違っていたら訂正をお願いします。 次の複素関数の解き方,解答を教えてください 次の複素関数の解き方,解答を教えてください 正則関数f(z)の実部をu = u(x, y),虚部をv = v(x, y)とおくとき(2u - v) + i(u + 2v) が正則かどうかコーシー・リーマンの方程式を利用して調べよ。 お願いします。 複素関数 聞きたいことが2つあります。 1つ目は複素関数w=u+ivについてです。 この関数がコーシーリーマンの関係式を満たすとき、w'=a+ibもコーシーリーマンの関係式を満たすことを示したいのです。 まず、wにコーシーリーマンの関係式を適用してからラプラスの関係式を適用して d^2u/dx^2 + d^2u/dy^2 =0 d^2v/dx^2 + d^2v/dy^2 =0 となります。 このあと、a=du/dx + du/dy b=dv/dx + dv/dy と定義します。 でコーシーリーマンの関係式を使ったのですがどうにも一致しません^^; aとbの定義が違うのでしょうか? 2つ目は円柱周りの流れを表す複素速度ポテンシャルについてです。 f(z)=Az+B/z=φ+iψ f'(z)=u-iv と定義されていて、境界条件が設定されているのですが使い方がよくわかりません。 f(z)=φ+iψで、ラプラスが成り立つことは証明済みなのですが、これをうまく使うのでしょうか? どうぞ、よろしくお願いします。 正則関数に関する問題で・・・ 次の問題がよくわからないので良かったら教えてください。 Q,f(z)=(e^iz―e^-iz)/2i :z=x+iyとする。 1. u(x,y)=Re(f(z)), v(x,y)=Im(f(z))を求めよ。 2.コーシー・リーマンの方程式を用いてf(z)が正則となる領域を求めよ。 1のほうは複素数になっちゃうんですが自信がないのでどうかお願いします。 正則性について。 --------------------------------------------------- f(z)=1/(bar(z)) z = x + iy とし z ≠ 0においてf(z)が正則であるかどうか判定せよ。 また、 R>0に対して複素積分 ∫_[|z|=R]f(z)dz の値を求めよ --------------------------------------------------- という問題なのですが、 u=x/x^2+y^2, v=u/x^2+y^2とすると、 ∂u/∂x = y^2-x^2/(x^2+y^2)^2 ∂v/∂y = x^2-y^2/(x^2+y^2)^2 となり、コーシー・リーマンの判定式を用いると、 ∂u/∂x≠∂v/∂yとなり、条件を満たさないので、 f(z)は正則ではないという結果が出ます。 f(z)が正則ではないのは、(bar(z))=0で特異点を持つためだと思うのですがこの問題の場合、z≠0で除外されていますよね? この場合、正則なのでしょうか? おそらく、特異点の捉え方がよくわかっていないのだと思います。 また、 次の問題はコーシーの積分公式で求めると思うのですが、 この公式は、bar(z)の場合にもそのまま当てはめてよいのでしょうか? ご指導ご鞭撻の程、宜しくお願い致します。 正則について。 以下にしめす関数の正則性について、コーシー・リーマンの方程式を用いて調べなさい。また、正則であれば導関数も求めなさい。 f(z)=Ze^z で、z=x+viに対して、e^z=u+vi,e^z=e^x*e^y =e^x(cosy+isiny) とすると、 u=e^x*cosy,v=e^x*siny とこんな感じで解いているのですが、どこでコーシーリーマンの定理を使うかもわかりません。どなたかご指導お願いします!m(_ _)m 複素関数の問題です。 複素関数の問題です。 複素関数の問題で分からない問題があって困っています。 【問題】 F(z)=u(x,y)+iv(x,y), z=x+iy において u(x,y)=a, v(x,y)=b で表される曲線をxy平面上に描いたとき、それらの交点においてF´(z)≠0であれば、その交点における各曲線に対する接戦が互いに直交することをコーシー・リーマンの関係式を用いて示せ。ただしF´(z)はF(z)の導関数であり、関数u(x,y)の点(x,y)での微分は、 du=(∂u/∂x)dx+(∂u/∂y)dy で与えられる。 わかる方がいれば、どうか教えていただけないでしょうか? よろしくお願いします。 f(z) = z - 1/z に対してコーシー・リーマンの関係式を使っ f(z) = z - 1/z に対してコーシー・リーマンの関係式を使って正則性を判定せよ。 解答 f(z)はz≠0において定義され、 f(z)= u + iv u = x - x/(x^2 + y^2) v = y + y/(x^2 + y^2) であり、 u_x = v_y u_y = -v_x よってz≠0で正則 …と書いてあって、 u_x = v_y、u_y = -v_xの偏微分は計算できるんですが、 その前の u = x - x/(x^2 + y^2) v = y + y/(x^2 + y^2) をどうやって導き出したのか教えてください (式さえ教えてくだされば自分で計算します)。 この本には例が一つも載っていません…。お願いします。 複素微分の存在→正則の証明 複素関数fの複素微分が存在するなら、その関数は正則であるということを証明するプロセスは複素関数論の教科書にはすべて載っていると思います。 私の本では複素微分df/dzにおいてdz=h+ikとして、k=0でh→0としたものと、h=0としてk→0としたものが一致しなければならないということから正則であることを誘導しています。複素微分による2つの特殊な例を適用したように見えるのですが、これで演繹的に証明したことになるのでしょうか。 これに関連して、正則とはコーシーリーマンの関係が成立することであり、それが正則の定義と考えていいのでしょうか。つまり正則ならコーシーリーマンの関係式が成立することを証明せよ、というようなことはないと思っていいでしょうか。 なお、正則→複素微分の存在という証明が別途出てきますが、こちらは平均値の定理とコーシーリーマンの式で演繹的に証明できたような印象なのですが。 正則かどうか教えてください 数年ぶりに数学をやらなければならず、さっぱりなので教えてください。 f(z)=1/zがz=0で正則かどうか、コーシーリーマンの方程式を使って判定しないといけません。 どうか、解法を教えてください。 f(z)=|z|^2はz=0で微分可能ではあるが、正則ではないことを示 f(z)=|z|^2はz=0で微分可能ではあるが、正則ではないことを示せ。 解答 f'(0) = lim[z->0] {f(z)-f(0)}/z = lim[z->0] z~ となり、z=0で微分可能。 z=0で正則とは0のある近傍で正則ということであるが、 z≠0のときf(z)=x^2+y^2はコーシー・リーマンの方程式を満たさない。 …と載っているんですが、 lim[z->0] {f(z)-f(0)}/z = lim[z->0] z~ の、いきなりz~になるところが分かりません。 どうやってz~を導くのか教えて下さい。 それと、この場合、f(0)で極限値をもてば、 z=0において微分可能と呼べるんですよね? lim[z->0] z~の極限値は0ということでいいですか? 複素関数の問題で・・・。 正則関数f(z)=u(x,y)+iv(x,y)に対して(u(x,y),v(x,y))のヤコビ行列式Jがlf'(z)l^2になることを示さないといけないのですが、この場合uとvをどのような式と仮定して解けばよいのでしょうか。式さえあれば実際に計算して証明できるのですが、何次式かもわからないしとけないです><御願いします。 複素関数の質問です。 問題の(1)と(2)はこれであっていますか? (3)と(4)が分からなかったので教えていただきたいです。 よろしくお願いします。 (1) f(z)=u(x,y)+iv(x,y)とする。 コーシーリーマンの関係式より ux=vy, uy=-vx-(1) またf(z~)=u(x,v)-iv(x,y)より ux=-vy, uy=vx よってux=uy=vx=vy=0となるので、u(x,y)とv(x,y)は定数となり、f(z)は定数。 (2) |f(z)|=√u^2(x,y)+v^2(x,y) g(x,y)=|f(z)|=√u^2(x,y)+v^2(x,y)とすると gx=(ux+uy)/g(x,y) gy=(vx+vy)/g(x,y) g(x,y)は定数なので ux=-uy, vx=-vy これらと(1)からux=uy=vx=vy=0となるので、u(x,y)とv(x,y)は定数となり、f(z)は定数。 複素関数 下の問題の証明がわかりません。どなたかヒント、解法を教えていただけないでしょうか。 条件・・・f(z)はz=0で微分可能で、f'(0)=1。 さらにすべてのz1、z2 に対して、f(z1+z2)=f(z1)f(z2)が成り立つとする。次のことを証明せよ。 (a) f(z)は -∞<z<∞ で正則である (b) すべてのzについてf'(z)=f(z) (c) f(0)=1 複素関数と行列の関係がわかりません 「複素数zについて,√zが定められている.このとき,正方行列Aの固有値が,0および虚部が負の純虚数でなければ,√Aが定義できる.これは,Aの固有値を含む領域において正則なzの関数f(z)に対して,f(A)が定義できるためである.」ということを習いました. ここで,質問なのですが,「正方行列Aの固有値が,虚部が負の純虚数でない」という条件はなぜ必要なのでしょうか? √zについてz=rexp(iθ)と極形式で表示して,コーシーリーマンの関係式を調べると,z=0のときは,√zは正則ではないということがわかり,これが「Aの固有値が0でない」ことを要求する理由だと考えました. しかし,r≠0かつθ=-π/2の場合は,√zが正則であるため,Aの固有値として虚部が負の純虚数が存在していても,√Aが定義できると考えてしまいます. ご教授願います. 複素関数の証明問題です f(z)がzの解析関数(正則関数)であるとき (∂^2/∂x^2 + ∂^2/∂y^2)|f(z)|^2 = 4|f'(z)|^2 を証明する問題なのですが f(z)=u(x,y)+iv(x,y)とおいて、左辺を計算すると、 (∂^2/∂x^2 + ∂^2/∂y^2)(u^2+2uvi-v^2) =(∂/∂x)(∂u^2/∂x)+(∂/∂x)(∂2uvi/∂x)-(∂/∂x)(∂v^2/∂x) +(∂/∂y)(∂u^2/∂y)+(∂/∂y)(∂2uvi/∂y)-(∂/∂y)(∂v^2/∂y) =(∂/∂x)(2u(∂u/∂x))+(∂/∂x)(2vi(∂u/∂x))-(∂/∂x)(2v(∂v/∂x)) +(∂/∂y)(2u(∂u/∂y))+(∂/∂y)(2vi(∂u/∂y))-(∂/∂y)(2v(∂v/∂y)) コーシー・リーマンの関係式を用いて、 =2(∂u/∂x)(∂v/∂y)+2i(∂v/∂x)(∂v/∂y)+2(∂v/∂x)(∂u/∂y) -2(∂u/∂y)(∂v/∂x)-2i(∂v/∂y)(∂v/∂x)-2(∂v/∂y)(∂u/∂x) =0 となりました。 最後のところで 2(∂u/∂x)(∂v/∂y)+2i(∂v/∂x)(∂v/∂y)-2(∂v/∂x)(∂u/∂y) -2(∂u/∂y)(∂v/∂x)-2i(∂v/∂y)(∂v/∂x)+2(∂v/∂y)(∂u/∂x) となれば 4{(∂u/∂x)(∂v/∂y)-(∂v/∂x)(∂u/∂y)} =4{(∂u/∂x)^2+(∂v/∂x)^2} =4|f'(z)|^2 となり、証明できるのですが、途中どこが間違っているかが分かりません 長文となりましたが、分かる方よろしくお願いします。