• 締切済み

複素関数

聞きたいことが2つあります。 1つ目は複素関数w=u+ivについてです。 この関数がコーシーリーマンの関係式を満たすとき、w'=a+ibもコーシーリーマンの関係式を満たすことを示したいのです。 まず、wにコーシーリーマンの関係式を適用してからラプラスの関係式を適用して d^2u/dx^2 + d^2u/dy^2 =0 d^2v/dx^2 + d^2v/dy^2 =0 となります。 このあと、a=du/dx + du/dy b=dv/dx + dv/dy と定義します。 でコーシーリーマンの関係式を使ったのですがどうにも一致しません^^; aとbの定義が違うのでしょうか? 2つ目は円柱周りの流れを表す複素速度ポテンシャルについてです。 f(z)=Az+B/z=φ+iψ f'(z)=u-iv と定義されていて、境界条件が設定されているのですが使い方がよくわかりません。 f(z)=φ+iψで、ラプラスが成り立つことは証明済みなのですが、これをうまく使うのでしょうか? どうぞ、よろしくお願いします。

みんなの回答

  • rabbit_cat
  • ベストアンサー率40% (829/2062)
回答No.1

1つ目 >aとbの定義が違うのでしょうか? 違います。 a = ∂u/∂x = ∂v/∂y b = ∂u/∂y = -∂v/∂x です。教科書を見直すか、微分の定義に従って計算しなおしてみてください。 2つ目は、質問が何なのかわかりませんが、 とりあえず、複素(解析)関数を流れのポテンシャルに使うと、ラプラス条件を満たすので、理想流体(圧縮・粘性を無視した流体)の連続の式を自動的に満たして都合がいいです。

関連するQ&A

  • 複素関数の問題です。

    複素関数の問題です。 複素関数の問題で分からない問題があって困っています。 【問題】 F(z)=u(x,y)+iv(x,y), z=x+iy において u(x,y)=a, v(x,y)=b で表される曲線をxy平面上に描いたとき、それらの交点においてF´(z)≠0であれば、その交点における各曲線に対する接戦が互いに直交することをコーシー・リーマンの関係式を用いて示せ。ただしF´(z)はF(z)の導関数であり、関数u(x,y)の点(x,y)での微分は、 du=(∂u/∂x)dx+(∂u/∂y)dy で与えられる。 わかる方がいれば、どうか教えていただけないでしょうか? よろしくお願いします。

  • 複素関数論

     以下の証明ができません。 解答方針だけでもいいので、どなたか教えてください。  u1=u(x1(t),y1(t)) v1=v(x1(t),y1(t)) u2=u(x2(t),y2(t)) v2=v(x2(t),y2(t)) とし、  cosθ={(dx1/dt*dx2/d2)+(dy1/dt*dy2/dt)}/√[{(dx1/dt)^2+(dy1/dt)^2}+{(dx2/dt)^2+(dy2/dt)^2}] cosθ'={(du1/dt*du2/d2)+(dv1/dt*dv2/dt)}/√[{(du1/dt)^2+(dv1/dt)^2}+{(du2/dt)^2+(dv2/dt)^2}] とすると、u(x,y)とv(x,y)がコーシーリーマンの関係式を満たす時   |cosθ|=|cosθ'| となることを示せ。

  • コーシー・リーマンの関係式の証明

    f(z)=u(x,y)+iv(x,y) において、(z=x+yi) (df/dx)*(dx/dz)=(df/dy)*(dy/dz) より、 コーシー・リーマンの関係式 du/dx=dv/dy,dv/dx=-du/dy が成り立つ。 ↑のような証明法ではまずいでしょうか?

  • 複素関数の導関数

    微分の定義     lim{Δz→0} {f(z + Δz) - f(z)}/Δz に立ち戻らずに偏微分などを使って複素関数の導関数を求めたいのですが。     w = f(z) = u + iv, z = x + iy (x,y,u,vは実数) として     f'(z) = dw/dz = (d/dz)(u + iv) までは合ってますよね? ここから     du/dz = (∂u/∂x)(∂x/∂z) + (∂u/∂y)(∂y/∂z) として     ∂z/∂x = 1, ∂z/∂y = i より     du/dz = ∂u/∂x - i ∂u/∂z 同様に     dv/dz = ∂v/∂x - i ∂v/∂z としてしまっていいのでしょうか? 実際の例としてf(z) = sin(z)を例に教えてください。

  • 合成関数の微分

    z=f(x、y) u=x+y v=x-yのとき、Z[u]、Z[v]をf[x]、f[y]を用いて表せっていう問題です。 z[u]=(dz/dx)(dx/du)+(dz/dy)(dy/du) x=u+v/2 だからdx/du=1/2 y=u=v/2 だからdy/du=1/2 よってz[u]=dz/dx(1/2)+dz/dy(1/2)      =1/2f[x]+1/2f[y] あってますか??答えは一致したんですけど、dz/dxをf[x]、dz/dyをf[y]にしてもいいんでしょうか?? 間違ってたら教えてください!!!

  • 複素関数の正則性。

    領域 D が実軸に関して対称であると仮定する。w = f(z) が正則ならば,w = f(¯z). も正則であることを示せ。 という問題が分かりません。 最終的に、「コーシー・リーマンの関係式を満たすので正則」と結論づけたいのですが、実際の関数が与えられていないため、∂u/∂xや∂v/∂yなどの計算ができなくて困っています。 どうすれば良いのでしょうか? よろしくお願いします。

  • 関数の導関数を求める方法(合成関数の微分を用いる方法)

    次の関数の導関数を求める問題なのですが、 以下の解き方であってるでしょうか? (1) f(x) = (2x+1)^3 f(x)=u^3, u=2x+1とおき、合成関数の微分を用いる。 公式 (dy/dx)=(dy/du)・(du/dx)より、 f'(x)=(dy/du)=3u^2 (du/dx)=2 ∴(dy/dx) = (dy/du)・(du/dx) = 3u^2・2 = 6u^2 = 5(2x+1)^2 (2) g(x)=1/(x^2+x+1) f(x)=u^(-1), u=x^2+x+1とおき、合成関数の微分を用いる。 公式 (dy/dx)=(dy/du)・(du/dx)より、 g'(x)=(dy/du)=u^(-1) (du/dx)=2x+1 ∴(dy/dx) = (dy/du)・(du/dx) = u^(-1)・(2x+1) = (x^2+x+1)^(-1)・(2x+1) = (2x+1)/(x^2+x+1)

  • 次の複素関数の解き方,解答を教えてください

    次の複素関数の解き方,解答を教えてください 正則関数f(z)の実部をu = u(x, y),虚部をv = v(x, y)とおくとき(2u - v) + i(u + 2v) が正則かどうかコーシー・リーマンの方程式を利用して調べよ。 お願いします。

  • 複素関数の正則性。

    誤って、回答締め切りをしてしまったため、再度立てさせていただきます。すみません。 領域 D が実軸に関して対称であると仮定する。w = f(z) が正則ならば,w =¯f(¯z). も正則であることを示せ。 という問題が分かりません。 最終的に、「コーシー・リーマンの関係式を満たすので正則」と結論づけたいです。 z=x+iy として、f(x-iy)とします。 fが具体的に与えられていないため、どのように∂u/∂xや∂v/∂yなどの計算を行えば良いのかが分かりません。 どうすれば良いのでしょうか? よろしくお願いします。

  • 複素関数が正則であるための条件を求める

    以下の画像のような条件で 1.f(z)がz=0で微分可能であるためのa,bの条件を求めよ 2.f(z)がz=0で正則であるためのa,bの条件を求めよ という問題があるのですが2番がわかりません。 1番はu,vをそれぞれx,yで偏微分してコーシー・リーマンの関係式にあてはめると a(1 + b) = -1 になりました。 2番がわかる方、計算するための条件、計算手順などを教えていただけませんでしょうか。 よろしくお願いします。